As part of an effort to improve its product lines, EMC periodically releases revisions of its software and hardware. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information on product features.

Contact your EMC technical support professional if a product does not function properly or does not function as described in this document.

Note
This document was accurate at publication time. Go to EMC Online Support (https://support.emc.com) to ensure that you are using the latest version of this document.

Related documentation
The release notes for your version includes the latest information for your product.

The following EMC publication sets provide information about your ScaleIO or ScaleIO Ready Node product:

- ScaleIO software (downloadable as ScaleIO Software <version> Documentation set)
- ScaleIO Ready Node with AMS (downloadable as ScaleIO Ready Node with AMS Documentation set)
- ScaleIO Ready Node no AMS (downloadable as ScaleIO Ready Node no AMS Documentation set)
- VxRack Node 100 Series (downloadable as VxRack Node 100 Series Documentation set)

You can download the release notes, the document sets, and other related documentation from EMC Online Support.

Typographical conventions
EMC uses the following type style conventions in this document:

Bold
Used for names of interface elements, such as names of windows, dialog boxes, buttons, fields, tab names, key names, and menu paths (what the user specifically selects or clicks)

Italic
Used for full titles of publications referenced in text

Monospace
Used for:
- System code
- System output, such as an error message or script
- Pathnames, filenames, prompts, and syntax
- Commands and options

Monospace italic
Used for variables

Monospace bold
Used for user input

[]
Square brackets enclose optional values
Where to get help

EMC support, product, and licensing information can be obtained as follows:

Product information
For documentation, release notes, software updates, or information about EMC products, go to EMC Online Support at https://support.emc.com.

Technical support
Go to EMC Online Support and click Service Center. You will see several options for contacting EMC Technical Support. Note that to open a service request, you must have a valid support agreement. Contact your EMC sales representative for details about obtaining a valid support agreement or with questions about your account.

Your comments
Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Send your opinions of this document to techpubcomments@emc.com.
CONTENTS

Preface 3

Figures 13

Tables 15

Part 1 Introduction 17

Chapter 1 Introduction to ScaleIO 19
What is ScaleIO? .. 20
System requirements. .. 20
ScaleIO cluster components ... 21
Physical server requirements .. 21
Supported operating systems ... 22
External SDC support... 24
GUI server requirements... 24
ScaleIO Gateway server requirements.. 25
Other requirements.. 25
New and changed features.. 26
New features for ScaleIO... 26
Changed features... 26
Product limits.. 26

Chapter 2 Architecture 29
ScaleIO Architecture Overview.. 30
System... 30
Hardware... 30
Software... 30
The MDM cluster.. 31
Storage definitions... 33
Protection Domains... 33
Storage Pools.. 33
Fault Sets.. 35
Naming... 36
Protection and load balancing... 36
Rebuild.. 36
Rebuild throttling.. 37
Rebalance.. 37
Rebalance throttling... 38
Checksum protection... 39
ESX vStorage APIs for Array Integration (VAAI)...................................... 39
Caching... 40
Networking... 43
VMware limitation.. 46
Virtual IP Address.. 46
Monitoring of SDC and SDS connections... 47
S.M.A.R.T. hardware monitoring.. 48
Chapter 9 GUI Features 135
GUI overview ... 136
GUI conventions ... 136
Alerts indicators ... 137
Color codes ... 137
Dashboard view .. 138
Navigation tree .. 139
System Settings and Logout menus 140
Dimmer .. 140
Widget .. 140
Dashboard tiles .. 141
Management (MDM) cluster status 144
Frontend views ... 146
Volumes .. 147
SDCs ... 148
Snapshots ... 148
Adding Frontend objects to the filter 148
Backend view ... 149
Command menu (3) ... 151
Filter (1) .. 151
Table ... 151
Alerts view ... 155
Property Sheets ... 156

Chapter 10 Monitoring the System using the GUI 161
Viewing object properties in Backend and Frontend views .. 162
Viewing licensing information ... 162
Verifying your connection to the Management cluster ... 162

Chapter 11 Configuring the System using the GUI 163
Configuring capacity .. 164
Adding SDSs and storage devices .. 164
Removing SDSs and devices ... 167
Adding, removing, and activating and inactivating capacity .. 168
Activating devices .. 170
Clearing device errors .. 170
Setting device capacity limits ... 170
Configuring cache .. 171
Setting Read Flash Cache policy at Storage Pool level ... 171
Setting Read Flash Cache policy at SDS level 172
Adding Read Flash Cache devices 172
Changing Read RAM Cache volume settings 173
Removing Read Flash Cache devices 174
Configuring Read RAM Cache (advanced, Backend) 174
Configuring volumes, volume trees, SDCs, and snapshots ... 176
Adding volumes ... 176
Restricted SDC mode ... 178
Mapping and unmapping volumes 180
Removing volumes .. 181
Creating volume snapshots .. 182
Removing snapshots .. 183
Removing snapshots from a consistency group 185
Increasing a volume’s size .. 186
Setting volume bandwidth and IOPS limits 187
Entering and exiting SDS Instant Maintenance Mode..........................188
Configuring Oscillating Failure counters...189
 Configuring Oscillating Failure counter parameters..........................189
 Resetting Oscillating Failure counters...192
 Viewing Oscillating Failure counters...193
Applying Performance Profiles to system components..........................194
Configuring I/O priorities and bandwidth use (advanced)....................195
 Application IOPS and bandwidth (advanced).....................................195
 System IOPS and bandwidth (advanced)..196
Enabling and disabling Rebuild/Rebalance (advanced)..........................197
Using the background device scanner...197
 Enabling and disabling the background device scanner....................198
 Resetting the background device scanner counters..........................199
Modifying Checksum protection mode...199
Renaming objects...200
Approving pending security certificates..201
Customizing system preferences...201

Chapter 12 Using the VMware Plug-in 205
VMware Plug-in overview..206
Configuring components...207
 Configuring components—basic...209
 Configuring components—advanced...210
Viewing components...216

Part 4 Reference 219

Chapter 13 Common Tasks 221
Install the ScaleIO GUI...222
Log in to the ScaleIO GUI..222
Connection and disconnection information...223
Add LIA to a system to enable automated upgrade.............................223
Associating ScaleIO volumes with physical disks..............................224
 Volume information - Linux...224
 Volume information - Windows...225
 Volume information - AIX...226
Port usage and changing default ports..227
Installing SDC on an ESX server and connecting it to ScaleIO..............228
Installing SDC on a Linux server and connecting it to ScaleIO.............229
Installing SDC on an AIX server and connect it to ScaleIO..................230
Installing SDC on a Windows server and connecting it to ScaleIO........230
Changing the LIA configuration file...231
Cleaning the ScaleIO VMware environment and performing a clean install....231
Configuring ScaleIO devices in Linux LVM...233
Configuring session timeout parameters..234
Fixing keytool errors..234
 Error during rpm installation command...234
 Error during rpm upgrade command...234
Installing Java on SUSE 12 servers...235
SVM manual memory allocation...235
Upgrading Java..237
SAN virtualization layer..310
SDC activities and monitoring..311
Enable error logging on AIX servers..313
Modify MDM IP address and GUID on AIX server..313

Glossary 315
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-node MDM cluster .. 32</td>
</tr>
<tr>
<td>2</td>
<td>Protection Domains and Storage Pools 34</td>
</tr>
<tr>
<td>3</td>
<td>Protection Domains, Storage Pools, and Fault Sets 35</td>
</tr>
<tr>
<td>4</td>
<td>ScaleIO system deployed on a single network 45</td>
</tr>
<tr>
<td>5</td>
<td>ScaleIO system deployed on separate networks 46</td>
</tr>
<tr>
<td>6</td>
<td>Snapshot operations ... 50</td>
</tr>
<tr>
<td>7</td>
<td>V-Tree diagram ... 51</td>
</tr>
<tr>
<td>8</td>
<td>Physical layout example—3-node cluster 55</td>
</tr>
<tr>
<td>9</td>
<td>Physical layout example—3-node cluster 56</td>
</tr>
<tr>
<td>10</td>
<td>ScaleIO implementation on ESX ... 59</td>
</tr>
<tr>
<td>11</td>
<td>ScaleIO Xen virtual machine architecture 61</td>
</tr>
<tr>
<td>12</td>
<td>Licensing LAC email ... 69</td>
</tr>
<tr>
<td>13</td>
<td>License file example .. 73</td>
</tr>
<tr>
<td>14</td>
<td>Add Volume window ... 90</td>
</tr>
<tr>
<td>15</td>
<td>Map Volumes window after mapping is complete 91</td>
</tr>
<tr>
<td>16</td>
<td>Alerts indicators .. 137</td>
</tr>
<tr>
<td>17</td>
<td>Dashboard controls ... 139</td>
</tr>
<tr>
<td>18</td>
<td>Widget, showing Return to Full-Screen button 141</td>
</tr>
<tr>
<td>19</td>
<td>Dashboard tiles ... 142</td>
</tr>
<tr>
<td>20</td>
<td>Frontend > Volumes view .. 147</td>
</tr>
<tr>
<td>21</td>
<td>Frontend > SDCs view ... 148</td>
</tr>
<tr>
<td>22</td>
<td>Frontend > filtered Snapshots view .. 148</td>
</tr>
<tr>
<td>23</td>
<td>Backend view .. 150</td>
</tr>
<tr>
<td>24</td>
<td>Backend filter ... 151</td>
</tr>
<tr>
<td>25</td>
<td>Alerts view ... 155</td>
</tr>
<tr>
<td>26</td>
<td>Multiple floating Property Sheets ... 158</td>
</tr>
<tr>
<td>27</td>
<td>Example of a Property Sheet for an SDS 159</td>
</tr>
<tr>
<td>28</td>
<td>Add SDS window ... 166</td>
</tr>
<tr>
<td>29</td>
<td>Add Device window showing command validation 167</td>
</tr>
<tr>
<td>30</td>
<td>Set Volume Use Read RAM Cache window 174</td>
</tr>
<tr>
<td>31</td>
<td>RAM Read Cache configuration at Storage Pool level 175</td>
</tr>
<tr>
<td>32</td>
<td>RAM Read Cache configuration at SDS level 176</td>
</tr>
<tr>
<td>33</td>
<td>Add Volume window ... 178</td>
</tr>
<tr>
<td>34</td>
<td>Map Volumes window after mapping is complete 181</td>
</tr>
<tr>
<td>35</td>
<td>Unmap Volumes window ... 181</td>
</tr>
<tr>
<td>36</td>
<td>Remove Volumes window ... 182</td>
</tr>
<tr>
<td>37</td>
<td>Snapshot Volume window .. 183</td>
</tr>
<tr>
<td>38</td>
<td>Removal of a volume and associated snapshots 185</td>
</tr>
<tr>
<td>39</td>
<td>Removal of snapshots of a specific volume 185</td>
</tr>
<tr>
<td>40</td>
<td>Remove Consistency Groups window .. 186</td>
</tr>
<tr>
<td>41</td>
<td>Increase Volumes’ Size window .. 187</td>
</tr>
<tr>
<td>42</td>
<td>Set Volume Limits window .. 188</td>
</tr>
<tr>
<td>43</td>
<td>Configure Oscillating Failure counters—System 191</td>
</tr>
<tr>
<td>44</td>
<td>Configure Oscillating Failure counters—Protection Domain or Storage Pool 191</td>
</tr>
<tr>
<td>45</td>
<td>Reset Oscillating Failure counters—System 192</td>
</tr>
<tr>
<td>46</td>
<td>Configure Oscillating Failure counters—Protection Domain or Storage Pool 193</td>
</tr>
<tr>
<td>47</td>
<td>Set Performance Profile window ... 195</td>
</tr>
<tr>
<td>48</td>
<td>Set Network Throttling window .. 197</td>
</tr>
<tr>
<td>49</td>
<td>Background device scanner configuration 199</td>
</tr>
<tr>
<td>50</td>
<td>Reset Background Device Scanner Counters window 199</td>
</tr>
<tr>
<td>51</td>
<td>Configure Use Checksum window ... 200</td>
</tr>
<tr>
<td>52</td>
<td>User Preferences window .. 202</td>
</tr>
<tr>
<td>53</td>
<td>Configure virtual IPs dialog box .. 216</td>
</tr>
<tr>
<td></td>
<td>Table Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Server physical requirements</td>
</tr>
<tr>
<td>2</td>
<td>Supported operating systems - ScaleIO components</td>
</tr>
<tr>
<td>3</td>
<td>Product limits</td>
</tr>
<tr>
<td>4</td>
<td>MDM cluster modes</td>
</tr>
<tr>
<td>5</td>
<td>Caching modes</td>
</tr>
<tr>
<td>6</td>
<td>Caching support matrix</td>
</tr>
<tr>
<td>7</td>
<td>IP address configurations in ScaleIO (based on CSV file)</td>
</tr>
<tr>
<td>8</td>
<td>eLicensing terminology (continued)</td>
</tr>
<tr>
<td>9</td>
<td>Licensing error messages</td>
</tr>
<tr>
<td>10</td>
<td>Local and LDAP user roles and permissions</td>
</tr>
<tr>
<td>11</td>
<td>GUI task overview</td>
</tr>
<tr>
<td>12</td>
<td>GUI color codes</td>
</tr>
<tr>
<td>13</td>
<td>Alert symbols and color codes</td>
</tr>
<tr>
<td>14</td>
<td>Dashboard tiles</td>
</tr>
<tr>
<td>15</td>
<td>Management node icons with normal operational status (green)</td>
</tr>
<tr>
<td>16</td>
<td>Management node status indications and color codes</td>
</tr>
<tr>
<td>17</td>
<td>Table view options</td>
</tr>
<tr>
<td>18</td>
<td>User Preferences</td>
</tr>
<tr>
<td>19</td>
<td>Plug-in activity matrix</td>
</tr>
<tr>
<td>20</td>
<td>Default ports</td>
</tr>
<tr>
<td>21</td>
<td>ScaleIO Alerts in SNMP, GUI, REST, and ESRS</td>
</tr>
<tr>
<td>22</td>
<td>SDC activities and monitoring</td>
</tr>
</tbody>
</table>
PART 1

Introduction

This section describes an overview of the benefits and system requirements of ScaleIO.

Chapters include:

Chapter 1, "Introduction to ScaleIO"

Chapter 2, "Architecture"
Introduction
CHAPTER 1

Introduction to ScaleIO

This section introduces ScaleIO.

- What is ScaleIO? ... 20
- System requirements .. 20
- New and changed features .. 26
- Product limits ... 26
What is ScaleIO?

ScaleIO

ScaleIO is a software-only solution that uses existing servers' local disks and LAN to create a virtual SAN that has all the benefits of external storage—but at a fraction of cost and complexity. ScaleIO utilizes the existing local storage devices and turns them into shared block storage. For many workloads, ScaleIO storage is comparable to, or better than external shared block storage.

The lightweight ScaleIO software components are installed on the application servers and communicate via a standard LAN to handle the application I/O requests sent to ScaleIO block volumes. An extremely efficient decentralized block I/O flow, combined with a distributed, sliced volume layout, results in a massively parallel I/O system that can scale up to thousands of nodes.

ScaleIO is designed and implemented with enterprise-grade resilience. Furthermore, the software features an efficient distributed self-healing process that overcomes media and server failures, without requiring administrator involvement.

Dynamic and elastic, ScaleIO enables administrators to add or remove servers and capacity on-the-fly. The software immediately responds to the changes, rebalancing the storage distribution and achieving a layout that optimally suits the new configuration.

Because ScaleIO is hardware agnostic, the software works efficiently with various types of disks, including: magnetic (HDD) and solid-state disks (SSD), flash PCI Express (PCIe) cards, networks, and hosts.

ScaleIO can easily be installed in an existing infrastructure as well as in green field configurations.

ScaleIO Ready Node

ScaleIO Ready Node is the combination of ScaleIO software-defined block storage and Dell PowerEdge® servers, optimized to run ScaleIO, enabling customers to quickly deploy a fully architected, software-defined, scale out server SAN.

Any hypervisor can run on ScaleIO Ready Node servers as an application consuming ScaleIO volumes.

In an AMS-based solution, a limited number of ESXi and RHEL operating systems are currently supported. For more information, see the operating system support tables.

The solution is managed by the AMS (Automated Management Services), which enables a simple or customized deployment process from bare metal, no IP state, to a fully-configured system: IP address assignment, ScaleIO deployment and configuration, and vCenter configuration.

Note

In the documentation set, there are references that are specific to either ESXi or RHEL operating systems, but not to both (for example, vCenter). These differences are not marked in most places.

System requirements

This section lists the requirements for system components.

This section is specific to ScaleIO software deployments.
For ScaleIO Ready Node or VxRack Node 100 Series systems, refer to your product’s Hardware Configuration and Operating System Installation Guide.

ScaleIO cluster components

List of required ScaleIO servers.
- ScaleIO component servers:
 - 3-node cluster
 - One Master MDM
 - One Slave MDM
 - One Tie Breaker
 - Minimum of three SDSs (on the same servers as the above components, or on three different servers)
 - SDCs, up to the maximum allowed (on the same servers as the above components, or on different servers)
 - 5-node cluster
 - One Master MDM
 - Two Slave MDMs
 - Two Tie Breakers
 - Minimum of three SDSs (on the same servers as the above components, or on three different servers)
 - SDCs, up to the maximum allowed (on the same servers as the above components, or on different servers)
- ScaleIO Gateway server on a separate server, or together with an MDM or SDS. Do not install the Gateway on an SDC server or on an SDS on which RFcache will be enabled.
- ScaleIO Gateway server on a separate server, outside of the ScaleIO system.

Physical server requirements

Table 1 Server physical requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• Intel or AMD x86 64-bit (recommended)</td>
</tr>
<tr>
<td></td>
<td>• Intel or AMD x86 32-bit (for Xen only)</td>
</tr>
<tr>
<td>Physical memory</td>
<td>ScaleIO component requirements:</td>
</tr>
<tr>
<td></td>
<td>• 500 MB RAM for the Meta Data Manager (MDM)</td>
</tr>
<tr>
<td></td>
<td>• 500 MB RAM for each ScaleIO Data Server (SDS)</td>
</tr>
<tr>
<td></td>
<td>• 50 MB RAM for each ScaleIO Data Client (SDC)</td>
</tr>
<tr>
<td></td>
<td>DAS Cache memory requirements (ScaleIO Ready Node, non-XenServers only). Add to every SVM/node that will be using DAS Cache:</td>
</tr>
<tr>
<td></td>
<td>• 1U1N servers—500 MB RAM</td>
</tr>
</tbody>
</table>
Table 1 Server physical requirements (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2U1N servers—1 GB RAM</td>
<td>To calculate SVM memory allocation, use the formulas provided in the ScaleIO Deployment Guide.</td>
</tr>
</tbody>
</table>
| Disk space | 1 GB for each physical node or Xen hypervisor
10 GB for VMware topologies |
| Connectivity | One of the following:
1 GbE or 10 GbE (recommended) network
IP-over-InfiniBand network
Dual-port network interface cards (recommended) |
| | Ensure the following:
There is network connectivity between all components.
Network bandwidth and latency between all nodes is acceptable, according to application demands.
Ethernet switch supports the bandwidth between network nodes.
MTU settings are consistent across all servers and switches.
The following TCP ports are not used by any other application, and are open in the local firewall of the server:
- MDM: 6611 and 9011
- Tie Breaker: 9011
- SDS: 7072. Multiple SDS (not supported on Windows): 7073-7076
- Light Installation Agent (LIA): 9099
- SDBG ports (used by ScaleIO internal debugging tools to extract live information from the system): MDM 25620, SDS 25640. Multiple SDS (not supported on Windows): 25641-25644 (not 25640).
The following UDP port is open in the local firewall of the server:
- SNMP traps: 162 |

Note
You can change the default ports. For more information, see “Changing default ports” in the user documentation.

Supported operating systems

The following is a list of operating systems supported by this version of ScaleIO.
For the most updated list, see the EMC Simple Support Matrix (ESSM) at https://elabnavigator.emc.com/eln/elnhome.
<table>
<thead>
<tr>
<th>Operating system</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| Linux | Supported versions:
| | - CentOS 6.x-7.x, Oracle Linux 6.5/7.x
| | - Red Hat 6.x-7.x
| | - SUSE 11.3, 11.4, 12, 12.1, 12.2
| | - Ubuntu 14.04, Ubuntu 16.04
| **Note** | Before deploying SDC or RFcache on Ubuntu servers, you must prepare the environment, as described in the *EMC ScaleIO Deployment Guide*.
| | Packages required for all components, all Linux flavors:
| | - numactl
| | - libaio
| | Additional packages required for MDM components:
| | - bash-completion (for SCLI completion)
| | - Latest version of Python 2.X
| | When installing the MDM component on Linux CentOS 6 or RHEL 6 hosts (for software-only systems), set the shared memory parameter in the /etc/sysctl.conf file to at least the following value: kernel.shmmax=209715200. To use this value, type the `sysctl -p` command.
| | To use the secure authentication mode, ensure that OpenSSL 64-bit v1.0.1 or later (v1.1, however, is not supported) is installed on all servers in the system.
| | To use the secure authentication mode on SUSE 11.3/11.4 servers, ensure that the OpenSSL on the server is v1.0.1 or later (v1.1, however, is not supported), or install these packages (from the ISO in the Complete VMware SW download container) on the server:
| | - libopenssl1_0_0-1.0.1g-0.40.1.x86_64.rpm
| | - openssl1-1.0.1g-0.40.1.x86_64.rpm
| | To use LDAP, ensure that OpenLDAP 2.4 is installed on all servers.
| Windows | Supported versions:
| | - 2008 R2, 2012, 2012 R2, or 2016 (in v2.0.1.1 and later). Server Core editions are not supported. (For ScaleIO Ready Node, 2008 R2 and 2012 are not supported.)
| | - For VxRack Node 100 Series, only 2012 R2 is supported.
| | - On all MDM servers, install the EMC-provided PythonModulesInstall.exe on all MDM nodes. The file is supplied on the ISO, or download from the EMC Online Support site (search for ScaleIO Python Installation Modules) on https://support.emc.com.
| | - To install SDC or RFcache on 2008 R2, ensure that Microsoft Security Update KB3033929 is installed.
| | To use the secure authentication mode, ensure that these are installed on all servers in the system:
| | - OpenSSL 64-bit v1.0.1 or later (v1.1, however, is not supported)

"Table 2 Supported operating systems - ScaleIO components"
Table 2 Supported operating systems - ScaleIO components (continued)

<table>
<thead>
<tr>
<th>Operating system</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypervisors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VMware ESXi OS: 5.5 U3, 6.0 U3, or 6.5, managed by vCenter 5.5, 6.0, or 6.5</td>
</tr>
<tr>
<td></td>
<td>• Hyper-V</td>
</tr>
<tr>
<td></td>
<td>• XenServer 6.5 or 7.0</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>OpenSSL 64-bit v1.0.1 is supported on XenServer 6.5 SP1 (or later)</td>
</tr>
<tr>
<td></td>
<td>• Red Hat KVM</td>
</tr>
</tbody>
</table>

External SDC support

In addition to being supported on all ScaleIO operating systems, SDC can be deployed on external servers.

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported external servers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UNIX: AIX 7.2</td>
</tr>
<tr>
<td></td>
<td>• hLinux: 4.x/5.x</td>
</tr>
</tbody>
</table>

GUI server requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported operating systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Windows:</td>
</tr>
<tr>
<td></td>
<td>• 7, 2008 R2, 10, 2012 or 2012 R2, 2016.</td>
</tr>
<tr>
<td></td>
<td>• Server Core editions are not supported.</td>
</tr>
<tr>
<td></td>
<td>• Linux:</td>
</tr>
<tr>
<td></td>
<td>• CentOS 6.x-7.x, Oracle Linux 6.5/7.x</td>
</tr>
<tr>
<td></td>
<td>• Red Hat 6.x-7.x</td>
</tr>
<tr>
<td></td>
<td>• SUSE 11.3, 11.4, 12, 12.1, 12.2</td>
</tr>
<tr>
<td></td>
<td>• Ubuntu 14.04, Ubuntu 16.04</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• v1.8 (64-bit), build 149 or earlier.</td>
</tr>
<tr>
<td></td>
<td>You can download previous versions from this link: http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html</td>
</tr>
<tr>
<td>Component</td>
<td>Requirement</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>• Screen resolution: 1366 x 768 minimum</td>
</tr>
</tbody>
</table>

ScaleIO Gateway server requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported operating systems</td>
<td>• Windows 2008 R2, 2012 R2, or 2016, including the Visual C++ redistributable 2010 package, 64-bit. Server Core editions are not supported.</td>
</tr>
<tr>
<td></td>
<td>• Linux:</td>
</tr>
<tr>
<td></td>
<td>- CentOS 6.x-7.x</td>
</tr>
<tr>
<td></td>
<td>- Oracle Linux 6.5/7.x</td>
</tr>
<tr>
<td></td>
<td>- Red Hat 6.x-7.x</td>
</tr>
<tr>
<td></td>
<td>- SUSE 11.3, 12, 12.1, and 12.2</td>
</tr>
<tr>
<td></td>
<td>- Ubuntu 14.04, Ubuntu 16.04</td>
</tr>
<tr>
<td></td>
<td>Every server requires 2 cores and a minimum of 3 GB available RAM.</td>
</tr>
<tr>
<td>Connectivity</td>
<td>The following TCP ports are not used by any other application, and are open in the local firewall of the server: 80 and 443 (or 8080 and 8443).</td>
</tr>
<tr>
<td></td>
<td>You can change the default ports. For more information, see “Changing default ports” in the user documentation.</td>
</tr>
<tr>
<td>Supported web browsers</td>
<td>• Internet Explorer 10, or later</td>
</tr>
<tr>
<td></td>
<td>• Firefox, version 42, or later</td>
</tr>
<tr>
<td></td>
<td>• Chrome, version 45, or later</td>
</tr>
<tr>
<td>Java</td>
<td>• v1.8 (64-bit), build 149 or earlier.</td>
</tr>
<tr>
<td></td>
<td>You can download previous versions from this link: http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html</td>
</tr>
<tr>
<td>Other</td>
<td>• For a Windows Gateway, the Windows Management Instrumentation service must be enabled on the IM server and on all Windows ScaleIO nodes.</td>
</tr>
<tr>
<td></td>
<td>• Do not install the Gateway on a server on which RFcache will be enabled or on which SDC will be installed.</td>
</tr>
<tr>
<td></td>
<td>• The Gateway server must have connectivity to all the nodes that are being installed. If you are using separate networks for management and data, the server must be able to communicate with both networks.</td>
</tr>
</tbody>
</table>

Other requirements

ScaleIO requires that you use a minimum of three SDS servers, with a combined free capacity of at least 300 GB. These minimum values are true per system and per Storage Pool.
ScaleIO installation enables unlimited use of the product, in non-production environments. To obtain a license for production use, and to receive technical support, open a service ticket with Customer Support at https://support.emc.com. For complete information on licensing, see the ScaleIO User Guide.

New and changed features

New features for ScaleIO

Learn about the new features introduced in the ScaleIO 2.5-<build> software.

Deployment with non-root user
In Linux environments, you can now deploy a ScaleIO cluster using a non-root sudo user in non-interactive mode.

SDC IP address association
To enable you to have more control over your ScaleIO system, you can set your system to run in restricted mode. This mode requires you to map volumes only to SDCs which have been previously approved by the user, by configuring them either by IP address or GUID.

Multiple LDAP server support
ScaleIO now supports the use of multiple LDAP servers.

SDC disconnection alerts
The system now generates alerts when disconnections occur between SDCs and SDSs.

Operating system support
ScaleIO now also supports the following operating systems:

- AIX 7.2 (for SDC core component only)
- ESXi 6.5 U1
- XEN 7.1
- XEN 7.2

Changed features

Learn about the changed features for ScaleIO 2.5-<build>.

Product limits

The following table lists product capabilities:

<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleIO System raw capacity</td>
<td>300 GB—16 PB</td>
</tr>
<tr>
<td>Device size</td>
<td>100 GB—8 TB</td>
</tr>
<tr>
<td>Item</td>
<td>Limit</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Minimum Storage Pool capacity</td>
<td>300 GB</td>
</tr>
<tr>
<td>Volume size</td>
<td>8 GB—1 PB</td>
</tr>
<tr>
<td>Maximum number of volumes/snapshots in system</td>
<td>32,768<sup>a</sup></td>
</tr>
<tr>
<td>Maximum number of volumes/snapshots in Protection Domain</td>
<td>32,768</td>
</tr>
<tr>
<td>Maximum number of volumes + snapshots in single VTree</td>
<td>32</td>
</tr>
<tr>
<td>Maximum capacity per SDS</td>
<td>96 TB</td>
</tr>
<tr>
<td>SDSs per system</td>
<td>1024</td>
</tr>
<tr>
<td>SDSs per Protection Domain</td>
<td>128<sup>a</sup></td>
</tr>
<tr>
<td>Maximum devices (disks) per SDS server</td>
<td>64<sup>b</sup></td>
</tr>
<tr>
<td>Maximum devices (disks) per Storage Pool</td>
<td>300<sup>a</sup></td>
</tr>
<tr>
<td>Minimum devices (disks) per Storage Pool</td>
<td>3, on different SDSs</td>
</tr>
<tr>
<td>Maximum SDCs per system</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>When using replication with RecoverPoint, the maximum number of SDCs is reduced by the number of RPAs in the system.<sup>c</sup></td>
</tr>
<tr>
<td>Maximum volumes that can be mapped to a single SDC</td>
<td>8192</td>
</tr>
<tr>
<td>Maximum Protection Domains per system</td>
<td>256</td>
</tr>
<tr>
<td>Maximum Storage Pools</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum Storage Pools per Protection Domain</td>
<td>64</td>
</tr>
<tr>
<td>Maximum Fault Sets per Protection Domain</td>
<td>64</td>
</tr>
<tr>
<td>Maximum IP addresses per server (MDM and SDS)</td>
<td>8</td>
</tr>
<tr>
<td>RAM Cache</td>
<td>128 MB—300 GB</td>
</tr>
</tbody>
</table>

^a If more are needed, contact EMC Support.
^b On VMware servers, the maximum devices per SDS is 59.
^c Replication support is version-specific. For information, see the ESSM.
CHAPTER 2

Architecture

The following topics describe the ScaleIO Ready Node architecture.

- ScaleIO Architecture Overview .. 30
- System .. 30
- The MDM cluster .. 31
- Storage definitions .. 33
- Protection and load balancing ... 36
- ESX vStorage APIs for Array Integration (VAAI) 39
- Caching ... 40
- Networking .. 43
- Virtual IP Address .. 46
- Monitoring of SDC and SDS connections .. 47
- S.M.A.R.T. hardware monitoring ... 48
- Snapshots ... 50
- Other functions .. 51
- Implementing ScaleIO .. 55
- Implementing ScaleIO over a virtual system ... 58
- Maintenance ... 61
- Management tools .. 63
- Configuring direct attached storage (DAS) ... 63
ScaleIO Architecture Overview

This chapter describes the ScaleIO architecture overview.
ScaleIO is a software-only solution. ScaleIO components are lightweight, highly available software components, installed on new or existing servers alongside your production applications (hypervisors, databases, web applications, etc.). The system can be installed directly on the servers, or over a virtual server system (hypervisor or virtual machines).

System

The ScaleIO system is based on a hardware and a software component.

Hardware

In general, hardware can be the existing application servers used by the datacenter, or a new set of nodes (if, for example, you want to dedicate all nodes solely for the purpose of running the ScaleIO SAN storage system).

- **Nodes**
 Nodes, or servers, are the basic computer unit used to install and run the ScaleIO system. They can be the same servers used for the applications (server convergence), or a dedicated cluster. In any case, ScaleIO is hardware-agnostic, and therefore, aside from performance considerations, the type of server is inconsequential.

- **Storage Media**
 The storage media can be any storage media, in terms of the type (HDD, SSD, or PCIe flash cards) and anywhere (DAS, or external).

Software

The ScaleIO virtual SAN consists of the following software components:

- **Meta Data Manager (MDM)**
 Configures and monitors the ScaleIO system. The MDM can be configured in redundant cluster mode, with three members on three servers or five members on five servers, or in single mode on a single server.

 NOTICE
 It is not recommended to use single mode in production systems, except in temporary situations. The MDMs contains all the metadata required for system operation. single mode has no protection, and exposes the system to a single point of failure.

- **ScaleIO Data Server (SDS)**
 Manages the capacity of a single server and acts as a back-end for data access. The SDS is installed on all servers contributing storage devices to the ScaleIO system. These devices are accessed through the SDS.

- **ScaleIO Data Client (SDC)**
 A lightweight device driver that exposes ScaleIO volumes as block devices to the application that resides on the same server on which the SDC is installed.
Depending on the desired configuration (described later), the software components are installed on the server and give rise to a virtual SAN layer exposed to the applications that reside on the servers.

The MDM cluster

The MDM serves as the monitoring and configuration agent of the ScaleIO system. The MDM is mainly used for management which consists of migration, rebuilds, and all system-related functions. No I/O run through the MDM.

To support high availability, three or more instances of MDM run on different servers. In a multi-MDM environment, one MDM is given the Master role, and the others act as Slave or Tie Breaker MDMs.

The MDM cluster comprises a combination of Master MDM, Slave MDMs, and Tie Breaker MDMs.

The following terms are relevant to the MDM, the building blocks of the MDM cluster:

- **MDM**

 Any server with the MDM package installed on it. An MDM can be given a Manager or a Tie Breaker (default) role, during installation. MDMs have a unique MDM ID, and can be given unique names.

 Before the MDM can be part of the cluster, it must be promoted to a Standby MDM.

- **Standby MDM and Tie Breaker**

 An MDM and a Tie Breaker can be added to a system as a standby. Once added, the standby MDM or Tie Breaker is attached, or locked, to that specific system.

 A standby MDM can be called on to assume the position of a Manager MDM or Tie Breaker MDM when it is promoted to be a cluster member.

- **Manager MDM**

 An MDM that can act as a Master or a Slave in the cluster. Manager MDMs have a unique system ID, and can be given unique names. A manager can be a standby or a member of the cluster.

 In ScaleIO documentation, “MDM” refers to a manager, unless specified otherwise.

- **Tie Breaker MDM**

 An MDM whose sole role is to help determine which MDM is the master. A Tie Breaker can be a standby or a member of the cluster. A Tie Breaker MDM is not a manager.

 In a 3-node cluster, there is one TB; in a 5-node cluster, there are two TBs. This ensures that there are always an odd number of MDMs in a cluster, which guarantees that there is always a majority in electing the master.

The following terms are relevant to the MDM cluster, specifically:

- **Master MDM (used to be called Primary MDM)**

 The MDM in the cluster that controls the SDSs and SDCs. The Master MDM contains and updates the MDM repository, the database that stores the SDS configuration, and how data is distributed between the SDSs in the system. This repository is constantly replicated to the Slave MDMs, so they can take over with no delay.

 Every MDM cluster has one Master MDM.
- **Slave MDM (used to be called Secondary MDM)**

 An MDM in the cluster that is ready to take over the Master MDM role if ever necessary.

 In a 3-node cluster, there is one Slave MDM, thus allowing for a single point of failure. In a 5-node cluster, there are two Slave MDMs, thus allowing for two points of failure. This increased resiliency is a major benefit to enabling the 5-node cluster.

- **Replica**

 An MDM that contains a replica of the MDM repository. This includes the Master MDM and any Slave MDMs in the MDM cluster.

The following table describes the available cluster modes:

Table 4 MDM cluster modes

<table>
<thead>
<tr>
<th>Cluster mode</th>
<th>Members</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3-node (default) | - Master MDM
 | - Slave MDM
 | - Tie Breaker | 3-node cluster has two copies of the repository, thus can withstand one MDM cluster failure. |
| 5-node | - Master MDM
 | - Two Slave MDM
 | - Two Tie Breaker | 5-node cluster has three copies of the repository, thus can withstand two MDM cluster failure. |
| Single-node | - Master MDM | Single-node cluster has only one copy of the repository, thus it cannot withstand failure. It is not recommended to use Single Mode in production systems, except in temporary situations. |

In addition to the cluster members, you can prepare standby Managers and Tie Breaker nodes, for a total of thirteen cluster and standby MDMs.

The MDM cluster IP address limit is 16 IP addresses, which includes all cluster members (Master, Slave, Standby Master, and Standby Slaves).

The following figure illustrates a 5-node MDM cluster:

Figure 1 5-node MDM cluster

![5-node MDM cluster diagram]

All members of the MDM cluster have the same MDM package installed on them.

Before a server makes its way into the MDM cluster, it must follow the following path:
1. Install the MDM package on the server.
 During the installation, you determine if the server will be a Manager or a Tie Breaker (default).
2. Promote the server to Standby status, either as a Manager or as a Tie Breaker.
3. Add the standby server to the MDM cluster. A Manager, once entered into the cluster can take on the Master or Slave state.

MDM cluster creation is done automatically when deploying a system with any of the automated deployment tools.

Storage definitions

When configuring a ScaleIO system, you should take the following concepts into account: Protection Domains, Storage Pools, and Fault Sets. Together, these elements link the physical layer with the virtualization layer.

Protection Domains

A Protection Domain is a logical entity that contains a group of SDSs that provide backup for each other. Each SDS belongs to one (and only one) Protection Domain. Thus, by definition, each Protection Domain is a unique set of SDSs. In Figure 2 there are three Protection Domains. The one in the middle (fully depicted) consists of seven SDSs, each with two storage devices.

The maximum recommended number of nodes in a Protection Domain is 100. This enables the following:

- optimal performance
- reduction of theoretical mean time between failure issues
- ability to sustain multiple failures in different Protection Domains

You can add Protection Domains during installation. In addition, you can modify Protection Domains post-installation with all the management clients (except for OpenStack).

Storage Pools

Storage Pools allow the generation of different storage tiers in the ScaleIO system. A Storage Pool is a set of physical storage devices in a Protection Domain. Each storage device belongs to one (and only one) Storage Pool. In Figure 2, there are 2 Storage Pools depicted.

When a volume is configured over the virtualization layer (see “SAN virtualization layer”), it is distributed over all devices residing in the same Storage Pool. Each volume block has two copies located on two different SDSs. This allows the system to maintain data availability following a single-point failure. The data will still be available following multiple failures, as long as each failure took place in a different storage pool.
To provide consistent performance it is recommended that all devices in the Storage Pool will have similar storage properties.

For example, consider Figure 2. If all SDSs in a Protection Domain have two physical drives associated with them—one HDD and the other SSD—then you should define two Storage Pools:

- **Capacity Storage Pool**
 - Consists of all HDDs in the Protection Domain

- **Performance Pool**
 - Consists of all SSDs in the Protection Domain

Note

Mixing different types of media in the same pool is allowed, but be aware that due to the distribution of the data, performance will be limited to the least-performing member of the Storage Pool.

ScaleIO might not perform optimally if there are large differences between the sizes of the devices in the Storage Pool, for example, if one device is as big as the rest of the devices. If in doubt, contact ScaleIO support.

Each Storage Pool can work in one of the following modes:

- **Zero padding enabled**

 Ensures that every read from an area previously not written to returns zeros. Some applications might depend on this behavior. Furthermore, zero padding ensures that reading from a volume will not return information that was previously deleted from the volume.

 This behavior incurs some performance overhead on the first write to every area of the volume.

- **Zero padding disabled (default)**

 A read from an area previously not written to will return unknown content. This content might change on subsequent reads.

Zero padding must be enabled if you plan to use any other application that assumes that when reading from areas not written to before, the storage will return zeros or consistent data.
Note

The zero padding policy cannot be changed after the addition of the first device to a specific Storage Pool.

You can add Storage Pools during installation. In addition, you can modify Storage Pools post-installation with most of the management clients.

Fault Sets

A Fault Set is a logical entity that contains a group of SDSs within a Protection Domain, that have a higher chance of going down together, for example if they are all powered in the same rack. By grouping them into a Fault Set, you are telling ScaleIO that the data mirroring for all devices in this Fault Set, should take place on SDSs that are outside of this Fault Set.

When defining Fault Sets, we refer to the term fault units, where a fault unit can be either a Fault Set, or an SDS not associated with a Fault Set (you may think of it as a Fault Set of a single SDS).

There must be enough capacity within at least 3 fault units to enable mirroring.

If Fault Sets are defined, you can use any combination of fault units, for example:

- SDS1, SDS2, SDS3
- FS1, SDS1, SDS2
- FS1, FS2, SDS1
- FS1, FS2, FS3

Figure 3 on page 35 illustrates the same configuration as Figure 2, with the addition of Fault Sets.

Figure 3 Protection Domains, Storage Pools, and Fault Sets

To use Fault Sets, you must work in the following order:

1. Ensure that a Protection Domain exists, or add a new one.
2. Ensure that a Storage Pool and Fault Sets (minimum of 3 fault units) exist, or add new ones.
3. Add the SDS, designating the PD and FS, and at the same time, adding the SDS devices into a Storage Pool.

The automated deployment and installation tools follow this order automatically.
You can only create and configure Fault Sets before adding SDSs to the system, and configuring them incorrectly may prevent the creation of volumes. An SDS can only be added to a Fault Set during the creation of the SDS.

You define Fault Sets and add SDSs to them during installation, using the following management tools:

- Installation manager
- CLI
- REST
- vSphere plug-in

You can also add Fault Sets when adding SDS nodes after initial installation.

Naming

It is recommended to name all ScaleIO objects with meaningful names. This will make it easier when defining volumes, associating them with applications, etc.

From the previous example, the Storage Pools can be named "Capacity_Storage" and "Performance_Storage," which allows you to identify the different tiers.

As for Protection Domains, one example would be separating the SDSs used by the finance department from those used by the engineering department. This segregation of different departments is very beneficial in many aspects (security being one of them). Thus, one might name the domains "Financial-PD" and "Engineering-PD."

The Fault Sets could be called "FS_Rack01" and "FS_Rack02."

Protection and load balancing

ScaleIO maintains the user data in a RAID-1 mesh mirrored layout. Each piece of data is stored on two different servers. The copies are randomly distributed over the storage devices. Rebuild and rebalance processes are fully automated, but are configurable.

Rebuild

When a failure occurs, such as on a server, device or network failure, ScaleIO immediately initiates a process of protecting the data. This process is called Rebuild, and comes in two flavors:

- **Forward rebuild** is the process of creating another copy of the data on a new server. In this process, all the devices in the Storage Pool work together, in a many-to-many fashion, to create new copies of all the failed storage blocks. This method ensures an extremely fast rebuild.

- **Backward rebuild** is the process of re-synchronization of one of the copies. This is done by passing to the copy only changes made to the data while this copy was inaccessible. This process minimizes the amount of data transferred over the network during recovery.

ScaleIO automatically selects the type of rebuild to perform. This implies that in some cases, more data will be transferred to minimize the time that the user data is not fully protected.
Rebuild throttling

Rebuild throttling sets the rebuild priority policy for a Storage Pool. The policy determines the priority between the rebuild I/O and the application I/O when accessing SDS devices. Please note that application I/Os are continuously served.

Applying rebuild throttling will on one hand increase the time the system is exposed with a single copy of some of its data, but on the other hand, will reduce the impact on the application. One has to make a decision and choose the right balance between the two.

The following possible priority policies may be applied:

- **No Limit:** No limit on rebuild I/Os.
 Any rebuild I/O is submitted to the device immediately, without further queuing. Please note that rebuild I/Os are relatively large and hence setting this policy will speed up the rebuild, but will have the maximal effect on the application I/O.

- **Limit Concurrent I/O:** Limit the number of concurrent rebuild I/Os per SDS device (default).
 The rebuild I/Os are limited to a predefined number of concurrent I/Os. Once the limit is reached, the next incoming rebuild I/O waits until the completion of a currently executed rebuild I/O. This will complete the Rebuild quickly for best reliability, however, there is a risk of host application impact.

- **Favor Application I/O:** Limit rebuild in both bandwidth and concurrent I/Os.
 The rebuild I/Os are limited both in bandwidth and in the amount of concurrent I/Os. As long as the number of concurrent rebuild I/Os, and the bandwidth they consume, do not exceed the predefined limits, rebuild I/Os will be served. Once either threshold is reached, the rebuild I/Os wait until both I/O and bandwidth are below their thresholds. For example, setting the value to "1" will guarantee the device will only have one concurrent rebuild I/O at any given moment, which will ensure the application I/Os only wait for 1 rebuild I/O at worst case.
 This imposes bandwidth on top of the Limit Concurrent I/Os option, which is a prerequisite to using this policy.

- **Dynamic Bandwidth Throttling:** This policy is similar to Favor Application I/O, but extends the interval in which application I/Os are considered to be flowing by defining a minimal quiet period. This quiet period is defined as a certain interval in which no application I/Os occurred. Note that the limits on the rebuild bandwidth and concurrent I/Os are still imposed.

- **Default Values:**
 - The default policy for rebuild is: Limit Concurrent I/O
 - Rebuild concurrent I/O Limit: 1 concurrent I/O

Note
Rebuild throttling affects the system's performance and should only be used by advanced users.

Rebalance

Rebalance is the process of moving one of the data copies to a different server. It occurs when ScaleIO detects that the user data is not evenly balanced across the devices in a Storage Pool. This can occur as a result of several conditions such as: SDS addition/removal, device addition/removal, or following a recovery from a failure.
ScaleIO will move copies of the data from the most utilized devices to the least utilized ones.

Both Rebuild and Rebalance compete with the application IO for the system resources. This includes network, CPU, and disks. ScaleIO provides a very rich set of parameters that can control this resource consumption. While the system is factory-tuned for balancing between speedy rebuild/rebalance and minimization of the effect on the application IO, the user has very fine-grain control over the rebuild and rebalance behavior.

Rebalance throttling

Rebalance throttling sets the rebalance priority policy for a Storage Pool. The policy determines the priority between the rebalance I/O and the application IO when accessing SDS devices. Please note that application I/Os are continuously served. Rebalance, unlike rebuild, does not impact the system’s reliability and therefore reducing its impact is not risky.

Note

Rebalance throttling affects the system's performance and should only be used by advanced users.

The following possible priority policies may be applied:

- **No Limit**: No limit on rebalance I/Os.
 Any rebalance I/O is submitted to the device immediately, without further queuing. Please note that rebalance I/Os are relatively large and hence setting this policy will speed up the rebalance, but will have the maximal effect on the application I/O.

- **Limit Concurrent I/O**: Limit the number of concurrent rebalance I/Os per SDS device.
 The rebalance I/Os are limited to a predefined number of concurrent I/Os. Once the limit is reached, the next incoming rebalance I/O waits until the completion of a currently executed rebalance I/O. For example, setting the value to "1" will guarantee that the device will only have one rebalance I/O at any given moment, which will ensure that the application I/Os only wait for 1 rebalance I/O in the worst case.

- **Favor Application I/O**: Limit rebalance in both bandwidth and concurrent I/Os.
 The rebalance I/Os are limited both in bandwidth and in the amount of concurrent I/Os. As long as the number of concurrent rebalance I/Os, and the bandwidth they consume, do not exceed the predefined limits, rebalance I/Os will be served. Once either limit is reached, the rebalance I/Os wait until such time that the limits are not met again.

 This imposes a bandwidth limit on top of the Limit Concurrent I/Os option.

- **Dynamic Bandwidth Throttling**: This policy is similar to Favor Application I/O, but extends the interval in which application I/Os are considered to be flowing by defining a minimal quiet period. This quiet period is defined as a certain interval in which no application I/Os occurred. Note that the limits on the rebalance bandwidth and concurrent I/Os are still imposed.

- **Default Values**:
 - The default policy for rebalance: Favor Application I/O
Rebalance concurrent I/O Limit: 1 concurrent I/O per SDS device

Rebalance bandwidth limit: 10240 KB/s

Checksum protection

This feature addresses errors that change the payload during the transit through the ScaleIO system. ScaleIO protects data in-flight by calculating and validating the checksum value for the payload at both ends.

Note

The checksum feature may have a major impact on performance and availability. Contact EMC customer support to verify if your use case is relevant.

- During write operations, the checksum is calculated when the SDC receives the write request from the application. This checksum is validated just before each SDS writes the data on the storage device.

- During read operations, the checksum is calculated when the data is read from the SDS device, and is validated by the SDC before the data returns to the application. If the validating end detects a discrepancy, it will initiate a retry. The checksum will be done in the granularity of a sector (1/2KB).

This feature applies to all IOs: Application, Rebuild, Rebalance, and Migrate. The checksum is also kept in RMcache (Read Memory Cache), protecting every block that is maintained in SDS memory against memory corruption. The checksum feature can be enabled at the Protection Domain level, and defined at the Storage Pool level. The feature is T10/DIF-ready.

ESX vStorage APIs for Array Integration (VAAI)

ESX vStorage APIs for Array Integration (VAAI) is a feature introduced in ESXi/ESX 4.1 that provides hardware acceleration functionality. It allows the host to offload specific virtual machine and storage management operations to compliant storage hardware. With the storage hardware's assistance, the host performs these operations faster, and consumes less CPU, memory, and storage fabric bandwidth.

VAAI uses these fundamental operations:

- Atomic Test & Set (ATS), which is used during creation and locking of files on the VMFS volume
- Clone Blocks/Full Copy/XCOPY, which is used to copy or migrate data within the same physical array
- Zero Blocks/Write Same, which is used to zero-out disk regions
- Thin Provisioning in ESXi 5.x and later hosts, which allows the ESXi host to tell the array when the space previously occupied by a virtual machine (whether it is deleted or migrated to another datastore) can be reclaimed on thin provisioned LUNs.
- Block Delete in ESXi 5.x and later hosts, which allows for space to be reclaimed using the SCSI UNMAP feature.

The ScaleIO supported VAAI features are:

- Atomic Test & Set (ATS)
- Zero Blocks/Write Same
• Thin Provisioning in ESXi 5.x and later hosts
• Block Delete in ESXi 5.x and later hosts

The following output is an example of typical output:

esxcli storage core device vaai status get -d
eui.7dbf14034834bbe01bf7e55800000002
eui.7dbf14034834bbe01bf7e55800000002
VAAI Plugin Name:
ATS Status: supported
Clone Status: unsupported This means that Clone Block/Full Copy/Xcopy is not supported.
Zero Status: supported This means that write same is supported.
Delete Status: supported This means that UNMAP is supported.

Note
Thin provisioning is not shown in VAAI output.

Caching

ScaleIO offers a number of caching options, for the purpose of enhancing system performance.
The following caching options are supported by ScaleIO:
• RAM Read Cache (using DRAM server memory)
• Read Flash Cache (using SSD and NVMe SSD devices)
In addition, the following caching solutions are available:
• CacheCade (using SSD devices) - available in VxRack Node 100 Series systems
• DAS Cache (using SSD devices) - available in ScaleIO Ready Node systems only

Note
DAS Cache is not supported on RHEL 7.4 operating systems nor on PowerEdge 14G servers.

SSDs used for caching cannot be used for storage purposes.
The following table summarizes information about the caching modes provided by the system.

Table 5 Caching modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Considerations</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM Read Cache (RMcache)</td>
<td>Read-only caching performed by server RAM.</td>
<td>RAM Read cache, the fastest type of caching, uses RAM that is allocated for caching. Its size is limited to the amount of allocated RAM.</td>
<td>Disabled, except when storage-only nodes are deployed.</td>
</tr>
</tbody>
</table>

Note
The amount that may be allocated is limited, and can never be the maximum available RAM.
<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Considerations</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Flash Cache</td>
<td>(RFcache) Read-only caching performed by one or more dedicated SSD or NVMe SSD devices in the server.</td>
<td>RFcache uses the full capacity of SSD devices (up to eight) to provide a larger footprint of read-only LRU (Least Recently Used) based-caching resources for the SDS. This type of caching reacts quickly to workload changes to speed up HDD Read performance. Several SSD devices can be allocated to a shared cache pool, and therefore the cache size is limited in size only by the amount of SSDs allocated for this purpose. The RFcache driver must be installed during deployment. Caching devices can be defined either during the installation process or after deployment. Limitations: RFcache does not support partitions on devices installed on Windows nodes. Support matrix: • An RFcache device (flash device) can be partitioned only on Linux. • An SDS storage/source device cannot be partitioned if it needs to be accelerated by RFcache. • An SDS storage/source device as a file (over file system), cannot be accelerated by RFcache.</td>
<td>Disabled</td>
</tr>
<tr>
<td>CacheCade</td>
<td>Read and write-back caching performed by one or more dedicated SSD devices in the server.</td>
<td>CacheCade uses the full capacity of one or more SSD devices to provide a large footprint of both read and write-back caching resources to the SDS. This caching mode moves "hot" (active) chunks of data from HDDs to cache, for Read and Write buffering. For write-back caching, the write is temporarily written to the SSD, which is much faster than an HDD, allowing faster response of the SDS to write acknowledgment. Two SSD devices can be allocated to a shared cache pool, up to a maximum size of 512 GB in total.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Table 5 Caching modes (continued)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Considerations</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS Cache</td>
<td>Read and write-back caching performed by one or more dedicated SSD devices in the server</td>
<td>DAS Cache uses the full capacity of one or more SSD devices to provide a large footprint of both read and write-back caching resources to the SDS. This caching mode moves "hot" (active) chunks of data from HDDs to cache, for Read and Write buffering. For write-back caching, the write is temporarily written to the SSD, which is much faster than an HDD, allowing faster response of the SDS to write acknowledgment. One SSD device can accelerate several HDDs (in DAS Cache they are called "Volumes"). Striping the Cache on two devices is not supported in the ScaleIO Ready Node solution.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Note
If a fault occurs in the caching device before the writes have been offloaded, all the HDD devices cached by DAS Cache acquire failed status, and a rebuild process commences in ScaleIO. Once the rebuild is over, the caching disk can be replaced, all caching has stopped in the storage pool, and the HDD members in the storage pool can be cleared of errors.

The following table illustrates the caching support matrix:

Table 6 Caching support matrix

<table>
<thead>
<tr>
<th>System</th>
<th>RFcache</th>
<th>RMcache</th>
<th>DAS Cache</th>
<th>CacheCad e</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleIO</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ScaleIO Ready Node PowerEdge 13G servers</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ScaleIO Ready Node PowerEdge 14G servers</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VxRack Node 100 Series</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Networking

In ScaleIO, inter-node communication (for the purposes of managing data locations, rebuild and rebalance, and for application access to stored data) can be done on one IP network, or on separate IP networks. Management (via any of the management interfaces) can be done in the following ways:

- Via a separate network with access to the other ScaleIO components
- On the same network

These options can be configured a) during deployment in the full Installation Manager (via the CSV topology file) and using the VMware plug-in, as well as b) after deployment with the CLI.

This section describes how to choose from these options, depending on your organization's requirements, security considerations, performance needs, and IT environment.

ScaleIO networking considerations:

- Single IP network: All communications and I/Os used for management and for data storage are performed on the same IP network. This setup offers the following benefits:
 - Ease of use
 - Fewer IP addresses required
- Multiple separate IP networks: Separate networks are used for management and for data storage, or separate networks are used within the data storage part of the system. This setup offers the following benefits:
 - Security
 - Redundancy
 - Performance
 - Separate IP roles in order to separate between customer data and internal management

Note

Network high availability can be implemented by using NIC-bonding (refer to relevant operating system vendor guidelines for best practices) or by using several data networks in ScaleIO.

For more information about MTU performance considerations and best practices, see the ScaleIO Performance Fine-Tuning Technical Notes.

Note

The MDM cluster IP address limit is 16 IP addresses, which includes all cluster members (Master, Slave, Standby Master, and Standby Slaves).

The following table describes the range of potential IP address configurations:
Table 7 IP address configurations in ScaleIO (based on CSV file)

<table>
<thead>
<tr>
<th>Column in CSV file</th>
<th>MDM Mgmt IP</th>
<th>MDM IPs</th>
<th>SDS All IPs</th>
<th>SDS-SDS Only IPs</th>
<th>SDS-SDC Only IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>Management Access</td>
<td>Control Network</td>
<td>Rebuild and Data Path Network</td>
<td>Rebuild Network</td>
<td>Data Path Network</td>
</tr>
<tr>
<td>Optional, but recommended; not applicable for Tie Breaker IP addresses that can be used to provide access to ScaleIO management applications, such as CLI, GUI, REST API, OpenStack. This IP address must be externally accessible.</td>
<td>Mandatory IP addresses used for MDM control communications with SDSs and SDCs, used to convey data migration decisions, but no user data passes through the MDM. Must be on the same network as the data network. Must be externally accessible if no MDM Management IP addresses are used.</td>
<td>IP addresses used for both SDS-SDS and SDS-SDC communications. These IP addresses will also be used to communicate with the MDM</td>
<td>IP addresses used for SDS-SDS communication only. These addresses are used for rebuild & rebalance operations. These IP addresses will also be used to communicate with the MDM</td>
<td>IP addresses used for SDS-SDC communication. These addresses are only used for read-write user data operations.</td>
<td></td>
</tr>
</tbody>
</table>

The following combinations can be used for SDS/SDC:

- Only *SDS All IPs*
- Only *SDS-SDS Only IPs* + *SDS-SDC Only IPs*
- *SDS All IPs* + either *SDS-SDS Only IPs* or *SDS-SDC Only IPs* (can be used in cases of multiple networks; ensure that you do not use the same IP address more than once in the networks).
- *SDS All IPs* + both *SDS-SDS Only IPs* and *SDS-SDC Only IPs* (can be used in cases of multiple networks; ensure that you do not use the same IP address more than once in the networks).

Note

On Linux nodes, only the MDM needs a management IP address.

On Windows nodes, only the MDM needs a management IP address.

On VMware, all ScaleIO VMs need to have a management IP address as well as another address for the data network, the network on which traffic flows between SDSs and SDCs for read/writes, rebuild, and rebalance.

In the following example drawing for separate networks, a very simple example is shown, where the management and storage parts of the system are on different networks. In more complex configurations, MDMs, SDCs and SDSs can be on separate networks. Up to 8 separate networks per ScaleIO system are supported.

The following figures show example configurations and the corresponding fields in a CSV configuration file:
Figure 4 ScaleIO system deployed on a single network
Figure 5 ScaleIO system deployed on separate networks

VMware limitation:
Multiple IP subnets used for the ScaleIO Data network cannot be on the same subnet in a VMware setup.

For more information, see the VMware limitation in the following link:

ScaleIO only supports the following network configurations when deployed on VMware:
- A single data storage network
- Two or more data networks, each on separate IP subnets
- A single IP data network using several NIC-bonding configurations, or vSwitch load balancing

Virtual IP Address

Virtual IP addresses can be defined for the MDM cluster.
Up to four virtual IP addresses can be defined for the MDM cluster. SDCs are then mapped to the MDM cluster's virtual IP addresses, instead of to static MDM IP
addresses. MDMs are sometimes switched during normal operation of the cluster, and the virtual IP address will always be mapped to the active MDM. The use of virtual IP addresses simplifies maintenance procedures on the MDM cluster, because system components communicate via the virtual IP addresses. Therefore, SDCs do not need to be reconfigured when a server hosting an MDM is replaced.

Note

Virtual IP addresses are not currently supported on Windows-based systems.

In new installations in Linux environments, the MDM cluster's virtual IP address can be added and mapped using the Installation Manager CSV file. In VMware environments, virtual IP addresses are mandatory, and configuration is performed using the ScaleIO VMware Installation Wizard, in the Configure SVM stage. The REST API can also be used to add virtual IP addresses to the cluster. In all cases, a virtual IP NIC placeholder must be mapped to each virtual IP address. Ensure that there are NICs available for this purpose.

Existing systems may be extended to include additional MDMs to a cluster. The new MDMs should be mapped to the existing virtual IP addresses.

If virtual IP addresses need to be modified, you must use the CLI or the REST API (not the IM or the vSphere plug-in), and it must be done with extreme caution.

All SDCs will require reconfiguration, to reflect the changes made to the MDM cluster. Otherwise, the SDCs will not be able to communicate with the MDM cluster, and volumes will not be accessible.

Monitoring of SDC and SDS connections

The system monitors all connections between SDCs and SDSs and sends out an alert when an active connection between an SDC and an SDS goes down.

To effectively monitor SDC and SDS connections, the MDM collects connectivity updates from all of the SDCs. The MDM posts events whenever an SDC connects to or disconnects from a specific SDS IP address. The MDM frequently analyzes the connectivity status to determine the current system state. The system does not send out alerts for temporary connectivity issues that are resolved in less than 10 seconds.

The following are the possible connectivity states between SDCs and SDSs in the system:

- All connected
- One SDC is disconnected from one SDS
- One SDC is disconnected from one SDS IP address
- One SDC is disconnected from all SDSs
- All SDCs are disconnected from one SDS
- All SDCs are disconnected from one SDS IP address
- All SDCs are disconnected from all SDSs
- Multiple disconnections

When the system's connectivity state changes to any state other than **All Connected**, an alert is displayed in the GUI and is written to the MDM event log. Once an alert is generated, you can use the SCLI to query details on the disconnection using the command `scli --query_sdc_to_sds_disconnections`. For more information about running SCLI commands, see the *CLI Reference Guide*.

The MDM does not monitor the connectivity state of SDCs or SDSs in the following scenarios:

- SDS is in maintenance mode
- SDS is disconnected from the MDM
- SDS is in the process of being removed
- SDC is disconnected from the MDM for more than two minutes
- SDC is not approved

The alerts are detailed in "Alerts in SNMP, GUI, REST, and ESRS" in the *ScaleIO User Guide*.

S.M.A.R.T. hardware monitoring

The ScaleIO bare-metal solution now provides monitoring capabilities for RAID controllers and storage devices compatible with S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) protocols.

In Linux-based environments, S.M.A.R.T.-compatible HDDs, SSDs and RAID storage controllers can be monitored for S.M.A.R.T. attributes such as temperature, SSD wear level, and error counters. LEDs can also be lit on these hardware devices, to simplify physical identification for maintenance purposes.

Each hardware vendor defines specific thresholds for the S.M.A.R.T. attributes. This feature currently supports storage devices controlled by LSI, HP and Dell RAID controllers, and stand-alone devices. During system deployment, an external monitoring tool is installed as part of the LIA on each node. Additional RAID controller tools must be installed manually after system deployment: storcli for LSI RAID controllers, hpssacli for HP RAID controllers, or perclcli for DELL RAID controllers. These tools are used by the system to collect the counters that are returned to the MDM.

Note

In some cases, LSI RAID controllers may report vendor information as "AVAGO" instead of LSI.

The MDM queries the SDSs at set intervals, and stores the returned information. This information can be viewed using CLI queries. In addition, when thresholds are crossed for S.M.A.R.T. attributes, alerts are generated by the system.

When the CLI is used to query device information, physical device information, such as serial number, model name, vendor etc., temperature, and wear level information (for SSDs only) is included in the returned response.

For information about the use of CLI commands, see the *ScaleIO CLI Reference Guide*.

For information about the use of REST API URIs, see the *ScaleIO REST API Reference Guide*.

You can use the GUI to monitor S.M.A.R.T.-related alerts in the Alerts view. Configuration and status information are shown in the Backend > Physical > S.M.A.R.T. view.

In addition, SNMP traps and ESRS alert codes can be used to monitor alerts triggered by devices compatible with S.M.A.R.T.
List of approved RAID controllers

Provides high-level specifications of RAID controllers, which are tested and certified by ScaleIO.

ScaleIO-certified RAID controllers
The following table describes the ScaleIO-certified RAID controllers:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Name: Smart Array P440ar</td>
</tr>
<tr>
<td></td>
<td>Vendor Name: HP</td>
</tr>
<tr>
<td></td>
<td>Firmware Version: 3.56</td>
</tr>
<tr>
<td></td>
<td>Driver Version: 3.4.10</td>
</tr>
<tr>
<td></td>
<td>Driver Name: hpsa</td>
</tr>
<tr>
<td></td>
<td>PCI Address: 0000:03:00.0</td>
</tr>
<tr>
<td>DELL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Name: PERC H730 Mini</td>
</tr>
<tr>
<td></td>
<td>Vendor Name: Dell</td>
</tr>
<tr>
<td></td>
<td>Firmware Version: 25.3.0.0016</td>
</tr>
<tr>
<td></td>
<td>Driver Version: 06.807.10.00-rh</td>
</tr>
<tr>
<td></td>
<td>Driver Name: megaraid_sas</td>
</tr>
<tr>
<td></td>
<td>PCI Address: 00:02:00:00</td>
</tr>
<tr>
<td>LSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Name: LSI MegaRAID SAS 9271-8i</td>
</tr>
<tr>
<td></td>
<td>Vendor Name: LSI</td>
</tr>
<tr>
<td></td>
<td>Firmware Version: 23.12.0-0021</td>
</tr>
<tr>
<td></td>
<td>Driver Version: 06.810.09.00-rh</td>
</tr>
<tr>
<td></td>
<td>Driver Name: megaraid_sas</td>
</tr>
<tr>
<td></td>
<td>PCI Address: 00:82:00:00</td>
</tr>
<tr>
<td></td>
<td>Model Name: LSI MegaRAID SAS 9271-8i</td>
</tr>
<tr>
<td></td>
<td>Vendor Name: LSI</td>
</tr>
<tr>
<td></td>
<td>Firmware Version: 23.12.0-0018</td>
</tr>
<tr>
<td></td>
<td>Driver Version: 06.805.06.01-rc</td>
</tr>
<tr>
<td></td>
<td>Driver Name: megaraid_sas</td>
</tr>
<tr>
<td></td>
<td>PCI Address: 00:82:00:00</td>
</tr>
<tr>
<td></td>
<td>Model Name: LSI MegaRAID SAS 9271-8i</td>
</tr>
<tr>
<td></td>
<td>Vendor Name: LSI</td>
</tr>
<tr>
<td></td>
<td>Firmware Version: 23.12.0-0021</td>
</tr>
<tr>
<td></td>
<td>Driver Version: 06.805.06.01-rc</td>
</tr>
<tr>
<td></td>
<td>Driver Name: megaraid_sas</td>
</tr>
<tr>
<td></td>
<td>PCI Address: 00:82:00:00</td>
</tr>
</tbody>
</table>
Snapshots

The ScaleIO storage system enables you to take snapshots of existing volumes, up to 31 per volume. The snapshots are thin provisioned and are extremely quick. For more information about thin provisioning, see [SAN virtualization layer](#).

Once a snapshot is generated, it becomes a new, unmapped volume in the system. You can manipulate it in the same manner as any other volume exposed by the ScaleIO storage system.

![Figure 6 Snapshot operations](image)

The structure related to all the snapshots resulting from one volume is referred to as a V-Tree (short for volume tree). When taking a snapshot in the system, you can specify more than one volume. All snapshots taken together form a consistency group. They are consistent in the sense that they were all taken at the same time. So if there is a contextual relationship between the data contained by all the snapshot members, then that set is meaningful. The consistency group allows manipulation of the entire set.

If you remove an entire consistency group, all of the snapshots that were taken together will be removed. In Figure 6 on page 50, in RED, S211 is a snapshot of V2. Since S112 and S211 were taken together, they compose a consistency group designated as C1.

Note

The consistency group is only for convenience purposes. There are no protection measures done by ScaleIO to conserve the consistency group. For example, you can remove a snapshot that is a member of a consistency group.
V-Trees

A V-Tree (short for volume tree) is the structure comprised of a volume and the snapshots resulting from that volume. It is a tree spanning from the source volume at its root, whose descendants are either snapshots of the volume itself or snapshots of a snapshot. In the V-Tree diagram, \(S_{111} \) and \(S_{112} \) are snapshots of \(V_1 \). \(S_{121} \) is a snapshot of snapshot \(S_{111} \). Together, \(V_1 \) and \(S_{1xy} \) are the V-Tree of \(V_1 \).

Figure 7 V-Tree diagram

Other functions

ScaleIO includes the following functions:

- **EMC Secure Remote Support (ESRS)**

 ESRS support enables secure, high-speed, 24x7, remote connection between EMC and customer installations, including:

 - Remote monitoring
 - Remote diagnosis and repair
 - Daily sending of logs, alerts, and ScaleIO topology

- **Syslog**

 The MDM syslog service can send events, via TCP/IP, to RFC 6587-compliant remote (or local) Syslog servers. Messages are sent with facility local0, by default. Once the syslog service is started, all events will be sent until the service is stopped.

- **Get Info**
Get Info assembles a ZIP file of system logs for troubleshooting. You can run this function from a local node for its own logs, using the CLI, or by using the Installation Manager to assemble logs from all MDM and SDS nodes in the system. In addition to the log files, a visual snapshot of the ScaleIO GUI, from the time you perform the operation, can be saved, to better enable support options.

The Get Info function is described in the *Log Collection Guide*.

- **Quality of Service (QoS)**
 You can adjust the amount of bandwidth and storage that any given SDC can use. You can configure this with the CLI and the REST interface, on a per client/per volume basis.

- **Background Device Scanner**
 The Background Device Scanner ("scanner") enhances the resilience of your ScaleIO system by constantly searching for, and fixing, device errors before they can affect your system. This provides increased data reliability than the media's checksum scheme provides. The scanner seeks out corrupted sectors of the devices in that pool, provides SNMP reporting about errors found, and keeps statistics about its operation.

 When a scan is completed, the process starts again, thus adding constant protection to your system.

 You can set the scan rate (default: 1 MB/second per device), which limits the bandwidth allowed for scanning, and choose from the following scan modes:

 - **Device only mode**
 The scanner uses the device's internal checksum mechanism to validate the primary and secondary data. If a read succeeds in both devices, no action is taken. If a faulty area is read, an error will be generated.

 If a read fails on one device, the scanner attempts to correct the faulty device with the data from the good device. If the fix succeeds, the error-fixes counter is increased. If the fix fails, a device error is issued.

 Note
 A similar algorithm is performed every time an application read fails on the primary device.

 If the read fails on both devices, the scanner skips to the next storage block.

 - **Data comparison mode (only available if zero padding is enabled)**
 The scanner performs the same algorithm as above, with the following additions:

 After successful reads of the primary and secondary copies of the data, the scanner calculates and compares their checksums. If this comparison fails, the compare errors counter is increased, and the scanner attempts to overwrite the secondary device with the data from the primary device. If this fails, a device error is issued.

 The scanning function is enabled and disabled (default) at the Storage Pool level, and this setting affects all devices in the Storage Pool. You can make these changes at anytime, and you can add/remove volumes and devices while the scanner is enabled.
When adding a device to a Storage Pool in which the scanner is enabled, the scanning will start about 30 seconds after the device is added.

- **AD over LDAP or LDAPS authentication**

User authentication may be done using AD (Active Directory) over LDAP (Lightweight Directory Access Protocol) or LDAPS (Secure LDAP). ScaleIO can support both AD users that are fully controlled through the customer’s existing centralized location, and local users (as has been supported in earlier ScaleIO versions). You can associate groups from the AD with the existing ScaleIO roles in order to ensure the Role-Based Access (RBAC) model. When a user logs on to the ScaleIO system, the MDM identifies that the user belongs to the AD domain, and authenticates the user against the AD server over secured communications. Once the user is authenticated, ScaleIO accepts the group to which the user belongs according to the AD, and associates the appropriate role and its user permissions to that user. The AD implementation is fully redundant.

Note

The authorization permissions of each role are defined differently for local authentication, and for LDAP/LDAPS authentication.

The benefits of using AD over LDAP/LDAPS include:

- Full control of ScaleIO users through the main user repository
- No need to specify a local user for each customer

 If the AD directory is down, the administrator can always use local users to maintain the ScaleIO system.

- **Oscillating failure handling**

The Oscillating Failures feature detects and reports various oscillating failures, in cases when components fail repeatedly and cause unnecessary failovers, and therefore disruptions to normal system operation. Typical examples of oscillating failures include:

- A disk that accepts some I/Os and rejects others
- A node with interrupted connectivity
- A node that is constantly busy and therefore handles some I/Os too slowly
- A disk that is sometimes slow to respond
- A network that is experiencing disruptions

The smart detection of such failures provides the ability to handle error situations, and to reduce their impact on normal system operation. Oscillating failure handling can be set for MDMs, SDSs and for SDCs. For SDSs, failure handling can be defined per Protection Domain or per Storage Pool.

- **Oscillating failure counters**

The following table describes the oscillating failure counters:

<table>
<thead>
<tr>
<th>Oscillating failure counters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sds_sds/sdc_mdm/sdc_sds/mdm_sds) network_disconnections</td>
<td>Measures the number of network disconnections (socket closed) between two components per IP address</td>
</tr>
</tbody>
</table>
Oscillating failure counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sds_decoupled</td>
<td>Measures the number of times an SDS process is down, as detected by the MDM</td>
</tr>
<tr>
<td>sds_configuration_failures</td>
<td>Measures the number of times the MDM fails to configure an SDS, when connecting to an SDS</td>
</tr>
<tr>
<td></td>
<td>(failures occur during the reconfiguration phase)</td>
</tr>
<tr>
<td>sds_receive_buffer_allocation_failures</td>
<td>Measures the number of times an SDS fails to allocate buffer for receiving messages</td>
</tr>
<tr>
<td>sdc_long_operations</td>
<td>Measures the number of SDC RPC operations that take longer than the predefined threshold</td>
</tr>
<tr>
<td></td>
<td>(default threshold is 5 seconds)</td>
</tr>
<tr>
<td>sdc_memory_allocation_failures</td>
<td>Measures the number of memory allocation failures in each SDC</td>
</tr>
<tr>
<td>sdc_socket_allocation_failures</td>
<td>Measures the number of socket allocation failures in each SDC</td>
</tr>
<tr>
<td>sds_device_long_successful_ios</td>
<td>Measures the number of successful IOs to an SDS device, which take longer than the predefined</td>
</tr>
<tr>
<td></td>
<td>threshold (default threshold is 250 milliseconds)</td>
</tr>
</tbody>
</table>

- Secure connectivity with external components
 This feature allows external components to authenticate the MDM. After authentication, communication between the MDM and external components is performed using TLS (Transport Layer Security) protocols.

 Secure communication with the MDM is authenticated by the following components:
 - CLI client

 Note
 If the secure mode is not enabled, modifications are necessary to run SCLI commands.

 - ScaleIO Gateway
 - GUI client
 - IM client

 Once added in the trust point, all communications will require authentication, followed by communications over TLS. The same method is employed between the IM and all LIAs.
Implementing ScaleIO

Implementing a ScaleIO system is, in general, a two-step process: first build the physical storage layer, then configure the virtual SAN layer on top of it.

Figure 8 Physical layout example—3-node cluster

Physical layer

The physical layer consists of the hardware (servers with storage devices and the network between them) and the ScaleIO software installed on them.

Typically, each SDS is physically located on a separate server, but ScaleIO also supports the installation of multiple SDSs per server.

The multiple SDS feature allows you to take fuller advantage of the server’s computing resources, particularly when no applications are running along-side the SDS. Each SDS on the server is unique, with its own name (for example, sds1, sds2), path, and ports used. This uniqueness provides better control over the SDSs installed. Each SDS can be installed, removed, or upgraded independently. It is up to the user to control the scope of the SDS object. For example, if the SDSs are placed in the same Protection Domain, the user must put them in a single Fault Set.

ScaleIO currently supports four SDSs running on each server. Each SDS is installed using a different RPM. The user can start with a single SDS, and add more SDSs later.

Currently, there is no Windows support for the Multiple SDS feature.

To implement the physical layer, perform the following steps:

1. Install the MDM component on the MDM nodes in one of the following configurations:
 - Three-node redundant cluster (one Master MDM, one Slave MDM, and one Tie Breaker).
• Five-node redundant cluster (one Master MDM, two Slave MDMs, and two Tie Breakers).
• Single node (one master MDM).

NOTICE

It is not recommended to use Single Mode in production systems, except in temporary situations. The MDM contains all the metadata required for system operation. Single Mode has no protection, and exposes the system to a single point of failure.

MDMs do not require dedicated nodes. They can be installed on nodes hosting other ScaleIO components.

2. **Install the SDS component on all nodes that will contribute some, or all, of their physical storage.**

 Divide the SDS nodes into Protection Domains. Each SDS can be a member of only one Protection Domain.

 Per Protection Domain, divide the physical storage units into Storage Pools, and optionally, into Fault Sets.

3. **Install the SDC component on all nodes on which the application will access the data exposed by the ScaleIO volumes.**

 Figure 9 Physical layout example—3-node cluster

Communication is done over the existing LAN using standard TCP/IP. The MDM and SDS nodes can be assigned up to eight IP addresses, enabling wider bandwidth and better I/O performance and redundancy.

You can perform physical layer setup using the following methods:

• ScaleIO Installation Manager a web-client based tool
• ScaleIO VMware plug-in a VMware plug-in
• Manual installation procedures
After completing this installation, the physical layer is ready, and can expose a virtual storage layer.

SAN virtualization layer

The MDM cluster manages the entire system. It aggregates the entire storage exposed to it by all the SDSs to generate a virtual layer - virtual SAN storage. Volumes can now be defined over the Storage Pools and can be exposed to the applications as a local storage device using the SDCs.

To expose the virtual SAN devices to your servers (the ones on which you installed and configured SDCs), perform the following:

- Define volumes. Each volume defined over a Storage Pool is evenly distributed over all members using a RAID protection scheme. By having all SDS members of the Storage Pool participate, ScaleIO ensures:
 - Highest and most stable and consistent performance possible
 - Rapid recovery and redistribution of data
 - Massive IOPS and throughput

You can define volumes as follows:

- **Thick**
 - Capacity is allocated immediately, even if not actually used. This can cause capacity to be allocated, but never used, leading to wasted capacity.
 - Thick capacity provisioning is limited to available capacity.

- **Thin**
 - Capacity is “on reserve,” but not allocated until actually used. This policy enables more flexibility in provisioning.

 Whereas thick capacity is limited to available capacity, thin capacity provisioning can be oversubscribed, as follows:

 Maximum thin capacity provisioning = 5 * (gross capacity - used capacity)

 When capacity usage reaches the level where it may cause IO errors, alerts are generated. At certain higher capacity levels, volumes (even thin volumes) can no longer be created.

Example:

In a system with 3 SDSs, each with 10 TB, there are 30 TB of storage.

In the system, there is already a thick-provisioned volume that takes up 15 TB of the gross capacity (created by adding a 7.5 TB volume).

MDM will allow a total of 300 TB gross to be provisioned, and since 15 TB are already allocated, you can add a thin-provisioned volume of 285 TB gross (by adding a 142.5 TB volume) or a thick-provisioned volume of 15 TB gross.

- Map volumes. Designate which SDCs can access the given volumes. This gives rise to the following:
 - Access control per volume exposed
 - Shared nothing or shared everything volumes

Once an SDC is mapped to a volume, it immediately gets access to the volume and exposes it locally to the applications as a standard block device. These block devices appear as `/dev/sciniX` where X is a letter, starting from “a.”
For example:
- `/dev/scinia`
- `/dev/scinib`

- When a volume is defined on an AIX SDC, one device is created with the following pathnames:
 - A block device, named `/dev/scinidX...n`, where X is a number, starting from “0.”
 - A raw device, named `/dev/rscinidX...n`, where X is a number, starting from “0.”

In general, mapping SDCs to AIX raw devices will yield best performance. If you are using the device to create a filesystem, use the block device.

- The maximum amount of partitions for the scini disk is 15.

- In a Windows environment, the device looks like any other local disk device, as shown in the Device Manager.

The maximum amount of volumes that can be mapped to an SDC is listed in the “Product limits” table.

Note

SDC mapping is similar to LUN mapping, in the sense that it only allows volume access to clients that were explicitly mapped to the volume.

This is the end of the system setup.

Implementing ScaleIO over a virtual system

This section provides an overview of how ScaleIO is implemented in a virtualized environment.

Implementing ScaleIO in an ESXi-based system

Implementation

In the VMware environment, the MDM and SDS components are installed on a dedicated SVM, whereas the SDC is installed directly on the ESX host.

Note

Installing the SDC on the ESX host requires a restart of the ESX host.

This implementation is illustrated in the following figure:
The LUNs in the previous figure can be formatted with VMFS, and then exposed using the ESXi host to the virtual machine, or can be used as RDM devices. When the LUNs are used as RDM devices, the VMFS layer is omitted.

Installation in a VMware environment is enabled via the vSphere plug-in.

Device management

In the VMware environment, devices can be managed in the following ways:

- **VMDirectPath I/O**

 Device management is performed via the SVM, yielding the best I/O performance. Devices are added to the system after the deployment. On factory-installed ScaleIO Ready Node servers, the vSphere plug-in configures DirectPath on the ESX servers and adds devices to the system. On other servers, you must enable VMDirectPath manually to the ESX server, then use the plug-in to add devices.

 Requirements:

 - When DirectPath is configured, all servers in the system must use DirectPath. For ScaleIO Ready Node or VxRack Node 100 Series systems, this can be configured with the ScaleIO vSphere plug-in. For other servers, use the vSphere client to configure each ESX host manually.
 - If the host has multiple controllers, you must configure DirectPath on that host manually, not with the plug-in. After that is done, you can use the plug-in to deploy ScaleIO on that host and to add devices to it.
 - All devices on all servers must not have any other use (not VMDK, RDM, or be part of a datastore).
 - PowerEdge 14G servers with any NVME devices cannot be added in a DirectPath-based system. Use RDM-based, instead.
ESX boot device requirements:
- Must be on a separate controller or connected directly to the board.
- SATADOM and M2 boot devices are supported. These devices allow the creation of a datastore on the system disk, which is needed to host the ScaleIO VM.
- USB boot devices are not supported.

RDM
Using RDM mapping, a device is created on the SVM that points to the physical disk on the ESX.

You can add RDM devices that are connected through a physical RAID controller. If a local RDM is not connected via a RAID controller, it may not be supported. To ensure the compatibility of these devices, you can add them as VMDK, or you can select Enable RDMs on non parallel SCSI controllers, as described in the "Advanced settings options" section of the ScaleIO Deployment Guide. Enable this option before beginning the deployment.

Before enabling this feature, contact EMC Support.

VMDK
A new datastore is created, with a VMDK, and the VMDK is added to the SVM. ScaleIO requires thick provisioning, so this process can take a long time.

In almost all cases, RDM is the preferred method to add physical devices. Use the VMDK method only in the following scenarios:
- The physical device does not support RDM.
- The device already has a datastore, and the device isn’t being completely used. The excess area that is not already being used will be added as a ScaleIO device.

Note
To use VMDK, select Enable VMDK creation, as described in the "Advanced settings options" section of the ScaleIO Deployment Guide.

System size
If you are deploying a very large ScaleIO system (several hundred nodes), you can increase the parallelism limit (default: 100), thus speeding up the deployment. This is dependent on the processing power of the vCenter.

To increase the parallelism limit, use the plug-in Advanced settings, as described in the "Advanced settings options" section of the ScaleIO Deployment Guide.

Pre-deployment considerations
You should take these considerations into account before deploying the system:
- Do you want to use separate networks for data and management (recommended), and which IP addresses will you use for the SVMs and VMkernels?
- Are there flash devices that will be added to the SDS?
- Do you want to create Fault Sets? See the requirements in Fault Sets on page 35.

Post-deployment considerations
You should take these considerations into account after deploying the system:
- After deployment is complete, set all SVMs to start automatically with the system. Do not set SVMs under the VMware resource-pool feature.
In a DirectPath environment, after deploying the system, you must add devices to the SDS.

Xen implementation

In a Xen environment, both the SDC and SDS are installed in Dom0 as would be on a physical node. Dom0 accesses the storage media through the SDS and exposes volumes based on ScaleIO through the SDC.

Figure 11 ScaleIO Xen virtual machine architecture

Information on provisioning in a Xen environment is described in this guide.

Maintenance

Maintenance of ScaleIO is primarily limited to configuration changes of the physical and virtual layers. It requires minimal user attention. When maintenance or planned restart of an SDS is required, the maintenance mode feature can be used to streamline system operation.

Maintaining the physical layer

In the physical layer, maintenance is limited to adding and removing hardware units and configuring them into the ScaleIO system. These operations are usually a result of:

- Scaling out when there is a need for additional capacity. This usually results in adding more storage media to the existing servers, or adding additional servers.
- Hardware failure. In cases where there is a hardware (storage media or server) failure and it needs to be replaced.

In all of the above cases, the operation will require adding or removing storage capacity from the system. In some cases, it may include adding or removing an entire server, and its associated storage media, from the configuration. As far as ScaleIO is concerned, all of these activities translate to SDS reconfigurations.

If the removed server is an SDC node, or the server to be added requires exposing storage locally, SDC reconfiguration will happen as well.

- Adding or removing storage media. Add or remove the media from the SDS with which it is associated. ScaleIO will redistribute the data accordingly and seamlessly.
• Adding or removing a node. Add or remove the SDC and SDS residing on the node. ScaleIO will redistribute the data accordingly and seamlessly.

Instant maintenance mode

Instant maintenance mode enables you to restart a server that hosts an SDS, with minimal impact on the ScaleIO system, thus bypassing the disruption and effort caused by disorderly shutdown, Protection Domain shutdown, and orderly shutdown.

Whereas ScaleIO always uses two copies of user data, invoking maintenance mode introduces an additional copy that stores all writes created during maintenance to an SDS or Fault Set (created during maintenance) in both a primary location and a new location. This copy prevents data loss if a single failure occurs.

When the SDS or Fault Set is returned from maintenance mode, only the new writes are required to be resynchronized, thus minimizing data transfer during and after the update.

Instant maintenance mode does not interrupt application IOs; it can be run on any amount of members of a Fault Set; and it can run in parallel on different Protection Domains. While an SDS is in maintenance mode, most ScaleIO operations (like adding a volume) cannot be performed in the Fault Set, Protection Domain, or Storage Pool in which the SDS and its devices reside.

To invoke maintenance mode, the following conditions are required:

• Only one Fault Unit (or standalone SDS) can be in maintenance mode at any given time.
• No other SDSs can be in degraded or failed state (force override can be used).
• There must be adequate space on other SDSs for the additional backup (force override can be used).

Note

Use of force override options when entering maintenance mode can lead to data unavailability while maintenance mode is activated.

While an SDS is in maintenance mode, it can be shut down with no danger to data.

Maintaining the virtualization layer

The following operations may be performed on volumes that are exposed by the ScaleIO virtual SAN:

• Add or remove a volume:
 Create or delete a volume in the system.

• Increase volume size:
 Add capacity to a given volume, as needed. The change in volume size occurs seamlessly without interrupting I/O.

• Map and unmap volumes to an SDC:
 This enables or disables access to a volume by an SDC, and thus by an application residing on the same node.
Management tools

You can provision, maintain, and monitor ScaleIO with the following management clients:

- **Command Line Interface (CLI)**
 The CLI enables you to perform the entire set of configure, maintain, and monitor activities in a ScaleIO system.

- **Graphical User Interface (GUI)**
 The GUI enables you to perform standard configure and maintain activities, as well as to monitor the storage system’s health and performance. You can use the GUI to view the entire system, and then drill down to different elements.

- **VMware plug-in (plug-in)**
 The plug-in enables you to perform basic provision and maintain activities in the VMware environment. In addition, the plug-in provides a wizard to deploy ScaleIO in the VMware environment.

- **OpenStack**
 ScaleIO provides Cinder and Nova drivers, which enable interoperation between a ScaleIO system and an OpenStack cloud operating system.

- **REST Gateway**
 A REST API can be used to expose monitoring and provisioning via the REST interface. The REST server is installed as part of the ScaleIO Gateway.

 Many ScaleIO activities can be performed in more than one management tool. The following tool is also provided:

 - **Installation Manager (IM)**
 The IM is used for installing ScaleIO, upgrading and uninstalling components, as well as running the get-info operation. The IM is installed as part of the ScaleIO Gateway.

Configuring direct attached storage (DAS)

ScaleIO works with any free capacity—internal or direct-attached devices, either magnetic hard disk drives (HDD) or flash-based devices such as solid state drive (SSD) and PCIe cards. Although ScaleIO can work with any device topology, it is recommended to configure the raw devices as stand-alone devices.

Device data is erased when devices are added to SDS. When adding a device to an SDS, ScaleIO will check that the device is clear before adding it. An error will be returned, per device, if it is found not to be clear. You can override this check by using the force device takeover option.

The following devices are considered to be not "clear," and thus cannot be added to SDS:

- **Linux** - A complete device with either a filesystem or partition, or a partitioned device with a filesystem.
- **Windows** - A complete device with a partition, or a partitioned device with a filesystem.
- **ESX** - Same as above, depending on the OS of the SVM where the SDS is installed.
Limitations:

- SAN devices will not be prevented from being added.
- Devices in an LVM group cannot be added to an SDS.
- Within the database devices, only Oracle ASM devices can be detected and blocked.

NOTICE

If the server has a RAID controller, ScaleIO prefers to use the controller’s caching abilities for better performance, but is better utilized when all devices are configured as stand-alone (i.e. setting each of the devices to RAID-0 separately). For HDD devices, it is recommended to enable RAID-controller caching. As for flash devices, it depends on the device behavior.

For Windows, when using a physical disk drive, it is recommended to generate a single, unformatted partition over the entire disk.

For more information about preparing Windows devices, see the “Preparing devices on Windows servers” section in the ScaleIO Deployment Guide.

Note

For HDDs: It is recommended to use RAID-controller caching when available as follows:

- **READ/WRITE**: if cache is battery-backed
- **READ ONLY**: if cache is NOT battery-backed

For flash devices (e.g. SSD): Depends on the device
The following chapters describe how to get ScaleIO started in your environment.
Chapters include:

Chapter 3, "Licensing"

Chapter 4, "User Management"

Chapter 5, "Creating and Mapping Volumes"
Getting Started
CHAPTER 3

Licensing

The following topics describe how to obtain and activate the electronic license for your ScaleIO software.

- Licensing overview ... 68
- Activating entitlements and installing a license file 69
- License file example ... 73
- Error messages .. 74
Licensing overview

ScaleIO installations are enabled to be fully functional, for non-production environments.

Using ScaleIO in a production environment requires a license. The license is installed on the MDM cluster, using the SCLI --set_license command.

To obtain a license for production use, and to receive technical support, open a service ticket with EMC Support at https://support.emc.com.

ScaleIO licenses are purchased by physical device capacity (in TB). You can activate your licensed capacity over multiple ScaleIO systems—each system with its unique installation ID.

You download ScaleIO licenses from the EMC Software Licensing Central website, using the procedures described in “Activating entitlements and installing a license file”. Then, you install the licenses on your ScaleIO system, as described in “Installing the license”.

You can view current license information using the CLI or the GUI.

The following steps summarize the licensing process:

1. Purchase ScaleIO, and receive a License Authorization Code (LAC) email with a link to the licensing site.

 If you do not have the LAC email, you can search for the LAC number from the EMC Software Licensing Central website, by entering the Sales Order number and using the Search Entitlements option.

2. Retrieve the installation ID from your ScaleIO system.

3. Click the link in the LAC email, and use the online wizard to complete the entitlement activation process.

 a. Save the license file, and install it using the CLI.

The following table describes ScaleIO eLicensing terminology.
Table 8 eLicensing terminology (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC Online Support</td>
<td>The EMC online support portal, http://support.emc.com, contains product support information and links to the Software Licensing Central web site.</td>
</tr>
<tr>
<td>Entitlements</td>
<td>The EMC Software Licensing Central web site lists the entitlements (usage rights) that you have purchased, that you can activate for a specific host machine.</td>
</tr>
<tr>
<td>LAC email</td>
<td>Email sent to a customer who has purchased an EMC product, containing a License Authorization Code (LAC), which is needed to complete the entitlement activation process on the EMC Software Licensing Central web site.</td>
</tr>
</tbody>
</table>

When you purchase a license entitlement for ScaleIO, a License Authorization Code (LAC) email is sent to you, or to your purchasing department. If you cannot find the LAC email, you can use the Software Licensing Central website to find your license entitlements.

The following figure shows a sample LAC email:

Figure 12 Licensing LAC email

Dear EMC Software User,
Thank you for choosing EMC software. Your EMC Software License Authorization Code (LAC) is [Redacted]. You must redeem the LAC for license keys to activate your software. Please protect your LAC like you would any other license key to prevent anyone from improperly activating your software.

Activating Your Software
1. Click here or copy and paste the following URL (https://) into a web browser to activate your entitlements.
2. You will be prompted to log in. (New users should follow the new member registration steps).
3. Follow the on-screen instructions.

Downloading Your Software
1. Click here or copy and paste the following URL (https://ngtest-ci.emc.com/downloads/) into a web browser to download your software.
2. You will be prompted to log into EMC’s Online Download Service Center (New users should follow the new member registration steps).
3. Enter the product name in the search field to find the software you wish to download.

License Authorization Code: [Redacted]

<table>
<thead>
<tr>
<th>Product #</th>
<th>Title</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>456-106-155EMC SCALEIO SOFTWARE CAPACITY-CB</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>456-106-155EMC SCALEIO ENTERPRISE FEATURES-CB</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

If you have any questions about your sales order please contact your EMC Account Representative or your Authorized Reseller.

Activating entitlements and installing a license file

ScaleIO licenses are assigned to ScaleIO systems, each of which is identified by a unique installation ID.

You use the ScaleIO installation ID, together with your LAC, to activate the entitlement and then download the license file. Then, you install this file in your MDM cluster.
Activating an entitlement and downloading the license file

This section describes how to activate the entitlement that was purchased. ScaleIO is procured by total capacity, but you can activate portions of this total capacity over multiple ScaleIO systems. For example, your purchase order may have been for 1000 TB. Your LAC will entitle you to activate all, or part of that. You can activate 500 TB for one ScaleIO system, and leave the rest for another activation, for the same, or a different system.

To activate the entitlement, perform the following:

Procedure

1. Identify the installation ID of your ScaleIO system:
 - **Using the CLI:**
 Run the following command:

     ```
     scli --query_license
     ```

 The installation ID is displayed:

     ```
     Installation ID: 0123456789abcdef
     ```

 Note
 To run CLI commands, you first need to log in. For more information see the "Logging In" section in the user documentation.
 Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.

 - **Using the GUI:**
 From the top right of the main window, open the drop-down menu that appears next to the user name, and select About.

 The installation ID is displayed in the About window.

2. If you have the LAC email, skip to step 4.
3. If you do not have your LAC email, perform the following:
 a. From the EMC support website, browse to the Software Licensing Central system:

 a. Open the EMC support website: http://support.emc.com.
 If you are a new user, create a new user account.

 b. From the Support Tasks list, click Manage Licenses and Usage Intelligence.

 c. From the software list, click ScaleIO. The Powerlink Licensing website is displayed.

 d. Click View Entitlements. The Search Entitlements screen appears.

 b. Type the Sales Order number, then click Search Entitlements.

 A list of entitlements is displayed.
c. Locate the entitlement to activate, and choose **Options > Activate**.

The **Powerlink Licensing—Search Entitlements to Activate** screen appears. Skip to **step 6**.

4. If you have your LAC email, perform the following:

a. Click the link in the LAC email, and log in.

The **Activate—Search for Products** screen appears:

b. Enter your LAC code, or search by Sales Order number, then click **Search**.

The **Select Products** screen appears:

5. In the **Select Products** screen, select the product to activate, and click **Start the Activation Process**.

6. In the **Company Details** screen, confirm (or update) company information, and click **Select a Machine**.

The **Select a Machine** screen appears:
7. In the **Select a Machine** screen, select a machine on which to activate the product in one of these ways:
 - Click **Search** to locate an existing machine (one on which EMC product was previously activated).
 - Add a new machine name, then click **Save Machine & Continue**.

 In the context of the activating process, a machine is a ScaleIO system, which could comprise multiple servers.

 The **Enter Details** screen appears:

8. In the **Enter Details** screen, enter the following:
 - **Quantity** (in TB) to activate on this machine.
To allocate the available capacity over multiple machines, select less than the full amount available, and repeat the activation process on the other machine.

- ScaleIO Installation ID, from the beginning of this procedure.

9. Click **Next**.
10. In the **Review** screen, you can review your selections.

The license key will be emailed to the user name that is logged in to the licensing system. To send it to more recipients, click **Email to more people** and enter their email addresses.

11. Click **Activate**.

Installing the license

To install the license, run the following command:

```
scli --set_license --license_file <license_file>
```

where `<license_file>` is the full path to the license file

Example:
```
scli --set_license --license_file /tmp/0239SH4SS89023T6.lic
```

The ScaleIO license is now installed on the MDM cluster.

You can view license information using the `query_license` command and from the **About** menu in the GUI.

Actual command syntax is operating-system dependent. For more information, see the **ScaleIO CLI Reference Guide**.

License file example

The following figure illustrates a license file with a license for 200TB of capacity:

Figure 13 License file example

The license file includes the following sections:
Error messages

The following table lists error messages that may be generated by the system and their troubleshooting solutions.

Table 9 Licensing error messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The license key is invalid or does not match this version. Contact Support.</td>
<td>The license key is invalid.</td>
<td>Contact support.</td>
</tr>
<tr>
<td>The current system configuration exceeds the license entitlements.</td>
<td>More capacity has been installed than the license allows.</td>
<td>Reduce capacity, or extend the license capacity.</td>
</tr>
<tr>
<td>Operation could not be completed. The license capacity has been exceeded.</td>
<td>When you try to add an SDS or device, it will cause the licensed capacity to be exceeded.</td>
<td>Do not add the SDS or device, or extend the license capacity.</td>
</tr>
<tr>
<td>The license key is too long</td>
<td>The license file is larger than expected.</td>
<td>Check the accuracy of the license key.</td>
</tr>
<tr>
<td>The license has expired</td>
<td>The duration of the license has ended.</td>
<td>Extend the duration of the license.</td>
</tr>
<tr>
<td>The license installation ID does not match the ID of this system</td>
<td>When the Installation ID was entered in the ELM, it may have been incorrect.</td>
<td>Contact support.</td>
</tr>
<tr>
<td>The license contains a mismatch of the SWID. Contact Support.</td>
<td>The license key is invalid.</td>
<td>Contact support.</td>
</tr>
<tr>
<td>The issuer of the license you are attempting to add does not match that of the product</td>
<td>The license key is invalid.</td>
<td>Contact support.</td>
</tr>
<tr>
<td>The license contains a mismatch of the capacity values for basic and advanced features. Contact Support.</td>
<td>The capacity licensed for basic features is not equal to the capacity licensed for advanced feature.</td>
<td>Contact support.</td>
</tr>
</tbody>
</table>
CHAPTER 4

User Management

The following topics describe how to create and manage users.

- Overview ..76
- User roles ...76
- Logging in ..77
- Setting the User Authentication Method ...79
- Adding and modifying local users .. 80
Overview

ScaleIO supports local domain user authentication, and LDAP domain authentication. In addition, secure authentication is used between system internal and external components. This chapter provides the CLI commands used to create and manage ScaleIO users. The REST API can also be used to configure LDAP. For more information, see the operations for MDM clusters in the ScaleIO REST API Reference Guide.

- To set up local domain users, follow the instructions in this chapter.
- To set up LDAP users, see a detailed explanation in the document ScaleIO User Roles and LDAP Technical Notes. In general, the following steps must be performed:
 1. Add LDAP service to the MDM.
 2. Create Active Directory (AD) groups that correspond to the user roles offered by ScaleIO.
 3. Set the system-wide authentication method (use with caution, because it is complex to roll-back this operation).
 4. Log in again to apply the changes that you made.

User roles

The authorization permissions of each user role are defined differently for local authentication, and for LDAP authentication. Although the role names are similar, the permissions granted to them are not.

User roles defined in the LDAP domain are mutually exclusive, with no overlap—with the exception of the Configurator role. If you want to give an LDAP user permission to perform both monitoring and configuration roles, for example, assign that user to both the Backend/Frontend Configurator and Monitor LDAP groups.

The Configurator and Super User roles do not exist at all for LDAP.

The following table describes the permissions that can be defined for local domain users and for LDAP domain users.

<table>
<thead>
<tr>
<th>User role</th>
<th>Query</th>
<th>Configure parameters</th>
<th>Configure user credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local</td>
<td>LDAP</td>
<td>Local</td>
</tr>
<tr>
<td>Monitor</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Configurator (this role is only applicable for local users)</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes (an aggregation of both Frontend and Backend Configurator)</td>
</tr>
<tr>
<td>Backend Configurator</td>
<td>Yes</td>
<td>No</td>
<td>Yes Backend operations only (Protection Domains,</td>
</tr>
</tbody>
</table>
Table 10 Local and LDAP user roles and permissions (continued)

<table>
<thead>
<tr>
<th>User role</th>
<th>Query</th>
<th>Configure parameters</th>
<th>Configure user credentials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local</td>
<td>LDAP</td>
<td>Local</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Pools, Fault Sets, SDSs, Devices, other system settings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontend Configurator</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security Roles</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Super User</td>
<td>Yes</td>
<td>Not applicable</td>
<td>Yes</td>
</tr>
<tr>
<td>(only one Super User is allowed per system, and it must be a local user)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Logging in

To access the CLI, you must first log in to the management system using a terminal application.

If the CLI and the MDM do not reside on the same server, add the `--mdm_ip` parameter to all CLI commands.

In a non-clustered environment, use the MDM IP address. In a clustered environment, use the IP addresses of the master and slave MDMs, separated by a comma. For example:

```
scli --mdm_ip 10.10.10.3,10.10.10.4 --login --username supervisor1 --password password1
```

You will be prompted to enter the password.

When using LDAP, include the LDAP domain in the command. For example:

```
scli --mdm_ip 10.10.10.3,10.10.10.4 --login --username JohnDoe@ldap.acme.com --password password1 --ldap_authentication
```

The default user created during setup is the SuperUser, with the `admin` username.
login

Log the specified user into the management system. Every user must log in before performing CLI commands.

When a user is authenticated by the system, all commands will be executed with the respective role until a logout is performed, or until the session expires, by reaching one of the following timeouts:

- Maximum session length (default: 8 hours)
- Session idle time (default: 10 minutes)

Syntax

```
scli --login --username <NAME>
    [--password <PASSWORD>]
    [--ldap_authentication | --native_authentication]
    [--approve_certificate]
    --accept_banner_by_scripts_only
```

Note

Actual command syntax is operating-system dependent.

Parameters

--username

Username

--password

User password. If you do not type your password, you will be prompted to do so.

Note

In Linux, to prevent the password from being recorded in the history log, leave out the `password` flag and enter the password interactively.

--ldap_authentication

Log in using the LDAP authentication method. LDAP authentication parameters should be configured and LDAP authentication method should be set.

--native_authentication

Log in using the native authentication method (default).

--approve_certificate

Preemptive approval of the MDM certificate

--accept_banner_by_scripts_only

Preemptive approval of login banner

Examples

```
scli --login --username siuser1 --password 1!2@3A
```
logout

Log the current user out of the system.

Syntax

```
scil --logout
```

Example

```
scil --logout
```

Setting the User Authentication Method

set_user_authentication_method

Set the user authentication method for the system.

⚠️ **WARNING**

Use this command with caution. The operation is complex to roll back.

Note

For details about setting up LDAP, refer to the *ScaleIO User Roles and LDAP Usage Technical Notes*.

Syntax

```
scil --set_user_authentication_method (--ldap_authentication | --native_authentication | --native_and_ldap_authentication) [--i_am_sure]
```

Parameters

--ldap_authentication

LDAP-based authentication method where users are managed on an LDAP-compliant server. Configure LDAP service and LDAP user before switching to this authentication method.
--native_authentication
Native authentication method where users are managed locally in the system

--native_and_ldap_authentication
A hybrid authentication method. Both LDAP and Native users may log in to the system after it is set.

--i_am_sure
Skip the safety questions for command execution. (For example: “This could damage the stored data. Are you sure?”)

Example

```bash
scli --set_user_authentication_method --native_and_ldap_authentication --i_am_sure
```

Adding and modifying local users

Users with the administrator role can manage system users, including adding new users and deleting existing users, modifying user credentials, and resetting user passwords.

The following CLI commands allow you to manage local users.

add_user

Add a user to the system. A randomly generated password for the created user is returned.

This command is available only to administrator users.

Each user name should conform to the following rules:

1. Contains fewer than 32 characters
2. Contains only alphanumeric and punctuation characters (when punctuation characters are being used, you may need to use the " or ' characters in order to allow it).
3. Is unique within the object type

Syntax

```bash
scli --add_user --username <NAME> --user_role {Monitor | Configure | BackEndConfigure | FrontEndConfigure | Security | Administrator}
```

Parameters

--username <NAME>
User name to add to the system

--user_role {Monitor | Configure | BackEndConfigure | FrontEndConfigure | Security | Administrator}
Role of the user: Monitor, Configurator, Backend Configurator, Frontend Configurator, Security, or Administrator. For information on user roles, see the ScaleIO User Guide.
Example

scli --add_user --username siuser2 --user_role Configure

delete_user

Delete the specified user from the system.
This command is available only to administrator users.

Syntax

scli --delete_user (--user_id <ID> | --username <NAME>)

Parameters

--user_id <ID>
- ID of the user to be deleted

--username <NAME>
- Username of the user to be deleted

Example

scli --delete_user --username siuser2

modify_user

Modify the user role of the specified user in the system.
This command is available only to administrator users.

Syntax

scli --modify_user (--user_id <ID> | --username <NAME>) --user_role {Monitor | Configure | BackEndConfigure | FrontEndConfigure | Security | Administrator}

Parameters

--user_id <ID>
- User ID of the user to modify

Note

The user ID is displayed when you create the user. To find this ID at a later time, use the query_user command.

--username <NAME>
- User name of the user to modify

--user_role {Monitor | Configure | BackEndConfigure | FrontEndConfigure | Security | Administrator}
Role of the user: Monitor, Configurator, Backend Configurator, Frontend Configurator, Security, or Administrator. For information on user roles, see the ScaleIO User Guide.

Example

```bash
scli --modify_user --username siuser3 --user_role Monitor
```

query_users

Display all the users defined in the system, with their roles and user ID.

Syntax

```bash
scli --query_users
```

Parameters

None.

Example

```bash
scli --query_users
```

query_user

Display information about the specified user.

This command is available only to administrator users.

Syntax

```bash
scli --query_user (--user_id <ID> | --username <NAME>)
```

Parameters

--user_id <ID>

User's ID number

Note

The user ID is displayed when you create the user. To find this ID at a later time, use the query_user command.

--username <NAME>

Name of the user

Example

```bash
scli --query_user --username sio_user
```
reset_password

Generate a new password for the specified user. The user must change the password again after logging in with the generated password.

This command is available only to administrator users.

Syntax

```
scli --reset_password (--user_id <ID> | --username <NAME>)
```

Parameters

--user_id <ID>

User ID of the user whose password will be reset

Note

The user ID is displayed when you create the user. To find this ID at a later time, use the `query_user` command.

--username <NAME>

User name of the user whose password will be reset

Example

```
scli --reset_password --username siuser3
```

set_password

Change the password of the user currently logged in to the system.

This command is available only to administrator users.

Syntax

```
scli --set_password [--old_password <OLD_PASSWORD>] [--new_password <NEW_PASSWORD>]`
```

Parameters

None.

--old_password <OLD_PASSWORD>

User's current password

--new_password <NEW_PASSWORD>

User's new password

Note

In Linux, to prevent the password from being recorded in the history log, omit the old_password or new_password flag and enter the password interactively.
Example

```
scli --set_password --old_password 1!2@3A --new_password P9*7&6
```

Password rules
The password must conform to the following rules:

1. Contains between six and 31 characters.
2. Contains characters from at least three of the following groups: [a-z], [A-Z], [0-9], special characters (!@#$...)
3. The current password is not allowed.

disable_admin

Disables the default Superuser.

The Superuser is the default user for setting up the system, and has all the privileges of all user roles. In some cases you may need to disable the Superuser in order to ensure that all users are associated with specific user roles.

Note

To re-enable the Superuser, use the `reset_admin` command.

Syntax

```
scli --disable_admin
  [--i_am_sure]
```

Parameters

`--i_am_sure`

Skip the safety questions for command execution.

Example

```
scli --disable_admin --i_am_sure
```

Reset the admin user password

You can reset the password of the default admin user (Superuser) using the combination of a file written to the MDM and the `reset_admin` CLI command.

Before you begin

Ensure that you are using the admin user with Superuser permissions.

Note

The procedure refers only to the default admin user with Superuser permissions, which was created during the system setup.

Procedure

1. Create a text file named `MDM_SERVICE_MODE` on the MDM in the location corresponding to your operating system:
Windows: C:\Program Files\emc\scaleio\MDM\logs
\MDM_SERVICE_MODE.txt

Linux: /opt/emc/scaleio/mdm/logs/MDM_SERVICE_MODE.txt

2. In the body of the file, type the text `Reset Admin`, and save the file.

3. From the CLI, run the `reset_admin` command:

   ```
scli --reset_admin
   ```

Results

The admin user password is reset to `admin`.

** reset_admin **

Reset the default Superuser.

Reset the password of the default admin user with Superuser permissions.

```
scli --reset_admin
   [--i_am_sure]
```

Syntax

```
scli --reset_admin
   [--i_am_sure]
```

Parameters

```
--i_am_sure
```

Skip the safety questions for command execution.

Example

```scli --disable_admin --i_am_sure```
The following topics describe how to create volumes from devices added to SDS nodes, and then to map the volumes to SDC nodes. Devices may have been added during, or after, the installation process.

- Creating and mapping volumes overview ........................................................... 88
- Creating volumes ............................................................................................... 88
- Mapping a volume to an SDC ............................................................................. 90
Creating and mapping volumes overview

You can create volumes from devices added to SDS nodes, and then map the volumes to SDC nodes. Devices may have been added during, or after, the installation process. Creating and mapping volumes can be performed using various management tools. The following procedures describe how to do so with the GUI, and provide references to the other tools.

The creating and adding volume process described in this section is necessary, as part of the Getting Started process, before applications can access the volumes. In addition, you may create additional volumes and map them as part of the maintenance of the virtualization layer.

Creating volumes

Adding volumes

Add volumes to a system.

Before you begin

There must be at least three SDS nodes in the system and there must be sufficient capacity available.

Note

For the minimum size of an SDS, see System requirements on page 20.

The adding and mapping volume process is necessary, as part of the getting started process, before applications can access the volumes. In addition, you may create additional volumes and map them as part of the maintenance of the virtualization layer.

You can configure the caching option when creating the volumes, or you can change the Read RAM Caching feature later. If you want to enable the caching feature, ensure that the feature is also enabled in the backend of the system, for the corresponding Storage Pool and SDSs. For more information, see Changing Read RAM Cache volume settings on page 173.

Define volume names according to the following rules:

- Contains less than 32 characters
- Contains only alphanumeric and punctuation characters
- Is unique within the object type

ScaleIO objects are assigned a unique ID that can be used to identify the object in CLI commands. You can retrieve the ID via a query, or via the object’s property sheet in the GUI. It is highly recommended to give each volume a meaningful name associated with its operational role.

To add one or multiple volumes, perform these steps:

Procedure

1. In any of the Frontend > Volumes views, navigate to the Storage Pool to which you want to add the volume, and select it.
2. From the Command menu or context-sensitive menu, select **Add Volume**.

3. In the **Add Volume** window, if you want to create more than one volume, select **Create multiple volumes** and type the number of volumes you would like to add in the **Copies** box.
   
   - If you type 1, only one volume will be created (optional—can be left blank).
   - If you type a number greater than 1, the characters %%i%% will be added to the **Name** box, and multiple volumes will be created, accordingly. The volumes will be named and numbered automatically, starting from 1. If you want the numbering to start from a different number, type it in the **Start numbering at** box, as described in **Step 5**. The remaining options in the window will be assigned to all the volumes created in this operation.

4. Type a name for the volume:
   
   - If you are adding one volume, enter the name in the **Name** box.
   - If you are adding multiple volumes, enter the base name in the **Base name** box. The volumes will all be created with the same name, and a number will be appended instead of the characters %%i%%. These characters can be positioned anywhere in the name. The names that will be created are displayed in the right pane of the window, as shown in the figure later in this topic.

5. If you want the numbering to start from a specific number other than 1, type it in the **Start numbering at** box.
   
   This number will be the first number in the series that will be appended to the volume name. For example, if the **Name** is Vol%%i%% and the **Start numbering at** value is 100, the name of the first volume created will be Vol100, and the second volume will be Vol101, and so on.

6. Type a number in the **Size** box, representing the volume size in GB (basic allocation granularity is 8 GB).

7. Select either **Thick** (default) or **Thin** provisioning options.

8. If you want to enable the RMcache feature (disabled by default), select **Use RMcache**.

9. Click **OK**.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
After you finish

To use the created volume, you must map it to (at least) one SDC. If the restricted SDC mode is enabled for the system, you must approve SDCs prior to mapping volumes to them. For more information on approving SDCs, see Approve SDCs (GUI) on page 179. For more information on mapping volumes, see Mapping a volume to an SDC on page 90.

Mapping a volume to an SDC

Mapping volumes

Map one or more volumes to SDCs.

Mapping exposes the volume to the specified SDC, effectively creating a block device on the SDC.

For Linux devices, the `scini` device name can change on reboot. It is recommended to mount a mapped volume to the ScaleIO Ready Node unique ID, a persistent device name, rather than to the `scini` device name.

To identify the unique ID, run the `ls -l /dev/disk/by-id/` command. For more information, see Associating ScaleIO volumes with physical disks on page 224. You can also identify the unique ID using VMware. In the VMware management interface, device is called EMC Fibre Channel Disk, followed by an ID number starting with the prefix `eui`.

To map volumes, perform these steps:

Procedure

1. In the Frontend > Volumes view, navigate to the volumes, and select them.
2. From the Command menu or context-sensitive menu, select Map Volumes.
The Map Volumes window is displayed, showing a list of the volumes that will be mapped.

3. In the Select Nodes panel, select one or more SDCs to which you want to map the volumes.
   - You can use the search box to find SDCs.
   - If you select an SDC that is already mapped to the volume, a green icon will appear in the mapping matrix on the right side of the window.

4. Click Map Volumes.
   
The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.

Figure 15 Map Volumes window after mapping is complete
PART 3

Managing and Monitoring

By the time you have reached this part of the guide, your ScaleIO should be up and running, all the way through mapping volumes to SDC nodes and installing the license. The chapters in this part of the guide describe how to use the CLI to manage and monitor ScaleIO activity and components. When applicable, the use of the GUI and the VMware plug-in is also referenced.

Chapters include:

Chapter 6, "Managing System Objects"
Chapter 7, "Security Management"
Chapter 8, "Opening the GUI and Logging In"
Chapter 9, "GUI Features"
Chapter 10, "Monitoring the System using the GUI"
Chapter 11, "Configuring the System using the GUI"
Chapter 12, "Using the VMware Plug-in"
CHAPTER 6
Managing System Objects

The following topics describe how to manage and configure ScaleIO system objects.

- **CLI basics** ................................................................. 96
- **Syntax** ........................................................................ 97
- **Extend an existing ScaleIO system** .............................. 99
- **Managing the MDM cluster** ......................................... 99
- **Managing the SDSs and cache** ................................... 109
- **SDC operations** .......................................................... 111
- **Managing ESX servers** ................................................ 120
CLI basics

The ScaleIO CLI, SCLI, enables you to perform all provision, maintain, and monitor activities.

The CLI is installed as part of the MDM component and can be found in the following path:

- Linux and VMware: scli
- Xen: siocli
- Windows: C:\Program Files\emc\scaleio\MDM\bin

All CLI commands use the following format:

- Linux, VMware, and Windows:
  ```
 scli [--mdm_ip <IP>] <command>
  ```
- Xen:
  ```
 siocli [--mdm_ip <IP>] <command>
  ```

Description: Execute a CLI command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--mdm_ip &lt;IP&gt;</td>
<td>One, or more IP addresses of the servers running the Master MDM and Slave. In a non-clustered environment, use the MDM IP address. If the CLI does not reside on the MDM, the --mdm_ip parameter must be added to every CLI command.</td>
</tr>
<tr>
<td>--approve_certificate</td>
<td>Preemptive approval of the MDM's certificate</td>
</tr>
<tr>
<td>&lt;command&gt;</td>
<td>Command to be executed</td>
</tr>
</tbody>
</table>

scli --mdm_ip 10.10.10.3,10.10.10.4 --query_all

The `mdm_ip` indicates the MDM that receives and is to execute the command. If the command is run from the Master MDM, this switch may be omitted.

To avoid using the --mdm_ip parameter in every command, or avoid having to install the CLI on other servers, use SSH or RDM to log in to the shell running on the management server.

You cannot execute SCLI commands on the Slave MDM. However, you can send a command from the Slave MDM by adding the IP address of the Master MDM to the command, using the --mdm_ip parameter.
Managing System Objects

Note

- The order of the parameters and command is insignificant.
- SCLI commands are lowercase and case-sensitive.
- All parameters are preceded by --

Before using most SCLI commands, you must log in, as described in the CLI Reference Guide.

Using SCLI in non-secure mode

If ScaleIO is running in non-secure mode, you must disable secure communications on every MDM server to enable execution of commands.

- To disable secure communications in Windows, on each MDM open the SCLI conf.txt file, and add the following line:

  \[
  \text{cli\_use\_secure\_communication}=0
  \]

- To disable secure communications in Linux, run the following on each MDM:

  \[
  \text{echo cli\_use\_secure\_communication}=0 \text{ >> ~/.scli/conf.txt}
  \]

Note

For more information on how to set up secure or non-secure mode, see the ScaleIO User Guide.

Syntax

All names of objects in the system will be capitalized, for example, Protection Domain. In the case where the name is in fact initials it will be in uppercase, for example, MDM.

The actual CLI command format uses the following format:

- Message - Required
- <> - Argument
- () – Required element
- [] – Optional element
- | - Select from options A|B|C

Each command entry uses the above syntax and looks like the following example:

Usage:

\[
\text{scli --cmd\_example --r1 (--r2 | --r3 <V1>) [o1 <V2>|o2]}
\]

[Options]

Description: a description of what cmd_example does
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--r1</td>
<td>r1 description</td>
</tr>
<tr>
<td>--r2</td>
<td>r2 description</td>
</tr>
<tr>
<td>--r3 &lt;V1&gt;</td>
<td>r3 description with possible V1 input values</td>
</tr>
<tr>
<td>--o1 &lt;V2&gt;</td>
<td>o1 description with possible V2 input values</td>
</tr>
<tr>
<td>--o2</td>
<td>o2 description</td>
</tr>
</tbody>
</table>

Options: CHOOSE SEVERAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--so1 &lt;V3&gt;</td>
<td>so1 description with possible V3 input values</td>
</tr>
<tr>
<td>--so2</td>
<td>so2 description</td>
</tr>
</tbody>
</table>

The interpretation is as follows:

- The text `scli --cmd_example r1` is mandatory.
- `(--r2 | --r3 <V1>)` indicates that you must choose one of the options separated by “|”. Selecting an option is REQUIRED, indicated by “( )”.
- `[o1 <V2>|o2]` indicates that you may choose one of the options separated by “|”. Selecting an option is OPTIONAL, indicated by “[ ]”.
- `[Options]` indicates that you may choose one of the options that will be described in the table under Options. It is OPTIONAL, indicated by “[ ]”.

### Getting help with the CLI

The CLI supports auto-completion. To complete a command or parameters, press the TAB key while typing CLI commands.

**Note**

In Windows, ScaleIO does not support auto-completion.

Alternately, you can run the `help` command.

**Command**

`help`

**Syntax**

`scli --help [Options]`

**Description/Notes**

Use this command to view CLI help.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options: CHOOSE ONE</td>
<td></td>
</tr>
</tbody>
</table>
### Extend an existing ScaleIO system

Options for adding nodes to an existing system.

You can add nodes to an existing system, as well as extend the MDM cluster from a 3-node to a 5-node cluster. Depending on your system, you can use the Installation Manager (for physical servers) or the vSphere plug-in (for ESXi servers).

These topics are described in the sections of the *ScaleIO Deployment Guide*:
- "Extending an existing ScaleIO system"
- "Extending the MDM cluster from 3 to 5-node"

### Managing the MDM cluster

You can replace or update the server IP address of an MDM that is currently a member of the MDM cluster. Various management tools are available to configure virtual IP addresses for the MDMs.

### Replacing, or updating an IP address on a member of the MDM cluster

This section describes how to replace an MDM server that is a member of the MDM cluster. This could be necessitated by a need to replace a faulty server or a need to change the server IP address. For purposes of this section, we will refer to the server that needs to be replaced as the current server.

There are two ways to accomplish this task, determined by whether you are able to add a new server to the cluster, or whether you do not have an extra server to add. If you have an extra server to replace the current server, then there is no need to change the cluster mode (3-node or 5-node). However, if you do not have an additional server, you will need to reduce the cluster mode, from 5-node to 3-node, or from 3-node to single node.
Note

It is not recommended to use single mode in production systems, except in temporary situations.

Regardless of the circumstances, the following rules are true:

- To remove a cluster member, you first make it a standby, then remove the standby.
- To add a member to a cluster, you first make it a standby, then add the standby to the cluster. In other words, you cannot move a server from being a cluster member to being entirely external, in either direction, without being a standby first.
- The cluster must always have 5, 3, or 1 members, never any other amount.

For a further understanding of this subject, see The MDM cluster on page 31.

Proceed to the section that describes your environment:

- Replacing a cluster member by adding a new member to the cluster on page 100
- Replacing a cluster member without adding a new server to the cluster on page 102

Replacing a cluster member by adding a new member to the cluster

This section describes how to replace a member of the cluster, by adding a new member to the cluster to take its place.

Before you begin, perform the following:

- Assign the necessary IP addresses to the replacement server.
- Install the MDM package on the server.

In this example, we are replacing the server whose IP address is 10.103.110.179, currently a member of a 5-node MDM cluster, with a server whose IP address is 10.103.110.57, which is currently external to any ScaleIO system. This process can be used to replace any role in the MDM cluster.

Procedure

1. Ensure that the current server (179) is not the Master MDM, by running the following command:

   scli --query_cluster

   Output, similar to the following, is displayed:

   ```
 # scli --query_cluster
 Cluster:
 Mode: 5_node, State: Normal, Active: 5/5, Replicas: 3/3
 Master MDM:
 Name: mdm17, ID: 0x5d07497754427fd0
 IPs: 10.103.110.17, 192.168.1.17, Management IPs:
 10.103.110.17, Port: 9011
 Version: 2.0.972
 Slave MDMs:
 Name: mdm19, ID: 0x26ee566356362451
 IPs: 10.103.110.19, 192.168.1.19, Management IPs:
 10.103.110.19, Port: 9011
   ```
In this case, server 179 is a Tie Breaker.

2. If the current server is the Master MDM, change its state using the switch_mdm_ownership command, as described in the ScaleIO CLI Reference Guide.

3. Make the replacement MDM server a standby MDM, and assign it a name (mdm57, in our example) by running the following command, on the Master MDM:

   ```
scli --add_standby_mdm --mdm_role tb --new_mdm_ip 10.103.110.57,192.168.1.57 --new_mdm_management_ip 10.103.110.57 --new_mdm_name mdm57
   ```

4. You can see the result of the command by running the following command:

   ```
scli --query_cluster
   ```

   Output, similar to the following, is displayed:

   ```
 # scli --query_cluster
 Cluster:
 Mode: 5_node, State: Normal, Active: 5/5, Replicas: 3/3
 ...
 Tie-Breakers:
 Name: mdm179, ID: 0x7380b70e2f73d346
 IPs: 10.103.110.179, 192.168.1.179, Port: 9011
 Status: Normal, Version: 2.0.972
 Name: mdm20, ID: 0x6dfe1c5f4062b5b3
 IPs: 192.168.1.20, 10.103.110.20, Port: 9011
 Status: Normal, Version: 2.0.972
 Standby MDMs:
 Name: mdm57, ID: 0x073e4c8b1d20d124, Tie Breaker
 IPs: 10.103.110.57, 192.168.1.57, Port: 9011
   ```

   mdm57 has been added as a standby MDM. Once it is a standby MDM, it can be added to the cluster.

5. Replace the current mdm179 with the standby mdm57 by running the following command:

   ```
scli --replace_cluster_mdm --remove_tb_name mdm179 --add_tb_name mdm57
 `
Replacing a cluster member without adding a new server to the cluster

This section describes how to replace a member of the cluster by removing it from the cluster, and then adding it back to the cluster. This procedure requires reducing the amount of nodes in the MDM cluster.

In this example, we are removing the current server whose IP address is 10.103.110.179, currently a Tie Breaker member of a 5-node MDM cluster. Because we must retain a majority in the MDM cluster, we must also remove one of the Slave MDMs in the cluster, in this case the MDM whose IP address is 10.103.110.19. This process can be used to replace any role in the MDM cluster.

Procedure

1. Ensure that the current server (179) is not the Master MDM:

 scli --query_cluster

 Output, similar to the following, is displayed:

 # scli --query_cluster
 Cluster:
 Mode: 5_node, State: Normal, Active: 5/5, Replicas: 3/3
 Master MDM:
 Name: mdm17, ID: 0x5d07497754427fd0
 IPs: 10.103.110.17, 192.168.1.17, Management IPs: 10.103.110.17, Port: 9011
 Version: 2.0.972
 Slave MDMs:
 Name: mdm19, ID: 0x26ee566356362451
 IPs: 10.103.110.19, 192.168.1.19, Management IPs: 10.103.110.19, Port: 9011
 Status: Normal, Version: 2.0.972
 Name: mdm18, ID: 0x5843c4d16d8f1082
 IPs: 10.103.110.18, 192.168.1.18, Management IPs: 10.103.110.18, Port: 9011
 Status: Normal, Version: 2.0.972
 Tie-Breakers:
 Name: mdm179, ID: 0x7380b70e2f73d346
 IPs: 10.103.110.179, 192.168.1.179, Port: 9011
 Status: Normal, Version: 2.0.972
 Name: mdm20, ID: 0x6dfe1c5f4062b5b3
 IPs: 192.168.1.20, 10.103.110.20, Port: 9011
 Status: Normal, Version: 2.0.972

 In this case, server 179 is a Tie Breaker.

2. If the current server is the Master MDM, change its state using the switch_mdm_ownership command, as described in the ScaleIO CLI Reference Guide.
3. Switch to a 3-node cluster:

```bash
scli --switch_cluster_mode --cluster_mode 3_node
--remove_tb_name mdm179 --remove_slave_mdm_name mdm19
```

The following output is displayed:

```
Successfully switched the cluster mode.
```

4. To view the result of the command, run:

```bash
scli --query_cluster
```

Output similar to the following is displayed:

```
# scli --query_cluster
Cluster:
Mode: 3_node, State: Normal, Active: 3/3, Replicas: 2/2
...
Slave MDMs:
Name: mdm18, ID: 0x5843c4d16d8f1082
IPs: 10.103.110.18, 192.168.1.18, Management IPs:
  10.103.110.18, Port: 9011
Status: Normal, Version: 2.0.972
Tie-Breakers:
Name: mdm20, ID: 0x6dfe1c5f4062b5b3
IPs: 192.168.1.20, 10.103.110.20, Port: 9011
Status: Normal, Version: 2.0.972
Standby MDMs:
Name: mdm19, ID: 0x26ee566356362451, Manager
IPs: 10.103.110.19, 192.168.1.19, Management IPs:
  10.103.110.19, Port: 9011
Name: mdm179, ID: 0x7380b70e2f73d346, Tie Breaker
IPs: 10.103.110.179, 192.168.1.179, Port: 9011

The cluster has been changed to 3-node mode, as a Slave MDM (mdm19) and a
TB MDM (tb179) have been removed and are now standby MDMs.
Now that the current server is a standby MDM, it can removed from the
ScaleI0 system.

5. Remove the current server from the ScaleI0 system:

```bash
scli --remove_standby_mdm --remove_mdm_name mdm179
```

The following output is displayed:

```
Successfully removed the standby MDM.
```

6. To view the result of the command, run:

```bash
scli --query_cluster
```
7. Reassign IP addresses to the current server, as required.
   In our case, we will assign the following IP address to the current server: 10.103.110.57.

8. Add the current server (57) back to the system as a standby MDM, and assign it the name mdm57:

   ```
 scli --add_standby_mdm --mdm_role tb --new_mdm_ip 10.103.110.57,192.168.1.57 --new_mdm_management_ip 10.103.110.57 --new_mdm_name mdm57
   ```

   Output similar to the following is displayed:

   ```
 Successfully added a standby MDM. Object ID 13c925450656db74
   ```

9. To view the result of the command, run:

   ```
 scli --query_cluster
   ```

   Output similar to the following is displayed:

   ```
 Cluster:
 Mode: 3_node, State: Normal, Active: 3/3, Replicas: 2/2
 ...
 Tie-Breakers:
 Name: mdm20, ID: 0x6dfe1c5f4062b5b3
 IPs: 192.168.1.20, 10.103.110.20, Port: 9011
 Status: Normal, Version: 2.0.972
 Standby MDMs:
 Name: mdm19, ID: 0x26ee566356362451, Manager
 IPs: 10.103.110.19, 192.168.1.19, Management IPs: 10.103.110.19, Port: 9011
 Name: mdm57, ID: 0x13c925450656db74, Tie Breaker
 IPs: 10.103.110.57, 192.168.1.57, Port: 9011
   ```

   The server `mdm57` is now a standby MDM, so it can be promoted to the MDM cluster.
10. Switch to 5-node cluster by adding the standby MDMs to the cluster:

```
scli --switch_cluster_mode --cluster_mode 5_node --add_slave_mdm_name mdm19 --add_tb_name mdm57
```

The following output is displayed:

```
Successfully switched the cluster mode.
```

11. To view the result of the command, run:

```
scli --query_cluster
```

Output similar to the following is displayed:

```
Cluster:
Mode: 5_node, State: Normal, Active: 5/5, Replicas: 3/3
Master MDM:
Name: mdm17, ID: 0x5d07497754427fd0
IPs: 10.103.110.17, 192.168.1.17, Management IPs: 10.103.110.17, Port: 9011
Version: 2.0.972
Slave MDMs:
Name: mdm18, ID: 0x5843c4d16d8f1082
IPs: 10.103.110.18, 192.168.1.18, Management IPs: 10.103.110.18, Port: 9011
Status: Normal, Version: 2.0.972
Name: mdm19, ID: 0x26ee566356362451
IPs: 10.103.110.19, 192.168.1.19, Management IPs: 10.103.110.19, Port: 9011
Status: Normal, Version: 2.0.972
Tie-Breakers:
Name: mdm20, ID: 0x6dfe1c5f4062b5b3
IPs: 192.168.1.20, 10.103.110.20, Port: 9011
Status: Normal, Version: 2.0.972
Name: mdm57, ID: 0x13c925450656db74
IPs: 10.103.110.57, 192.168.1.57, Port: 9011
Status: Normal, Version: 2.0.972
```

12. When changing an MDM IP address, it is mandatory to update and restart all the SDCs in the system as well.

a. Update the IP addresses:

Windows:

```
C:\Program Files\emc\scaleio\sdc\bin\drv_cfg --mod_mdm_ip --ip <EXISTING_MDM_IP_ADDRESS> --new_mdm_ip <NEW_MDM_IP_ADDRESSES>
```

Linux:

```
/opt/emc/scaleio/sdc/bin/drv_cfg --mod_mdm_ip --ip <EXISTING_MDM_IP_ADDRESS> --new_mdm_ip <NEW_MDM_IP_ADDRESSES>
```
b. Restart the SDC.
c. Verify the changes:

Windows:

```
C:\Program Files\emc\scaleio\sdcm\bin\drv_cfg --query_mdms
```

Linux:

```
/opt/emc/scaleio/sdcm\bin/drv_cfg --query_mdms
```

Output similar to the following should appear:

```
Retrieved 1 mdm(s)
MDM-ID 043925027bbbed30e SDC ID 28c5479b00000000
INSTALLATION ID
7214f7ca647c185b IPs [0]-9.4.4.12 [1]-9.4.4.11
```

## Configure virtual IP addresses

Configure virtual IP addresses for the MDMs in your ScaleIO system.

You can configure virtual IP addresses during deployment or post-deployment. Use the following management tools to configure virtual IP addresses:

<table>
<thead>
<tr>
<th>Management tool</th>
<th>Actions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Manager (IM)</td>
<td>Add virtual IP addresses only.</td>
<td>For details, see the deployment documentation.</td>
</tr>
<tr>
<td>vSphere Web plug-in</td>
<td>Add virtual IP addresses only.</td>
<td>For details, see the ScaleIO User Guide.</td>
</tr>
<tr>
<td>CLI</td>
<td>Add, modify, and remove virtual IP addresses.</td>
<td>For details, see the ScaleIO CLI Reference Guide.</td>
</tr>
<tr>
<td>REST API</td>
<td>Add, modify, and remove virtual IP addresses.</td>
<td>For details, see ScaleIO/REST API Reference Guide.</td>
</tr>
</tbody>
</table>

## Managing SDC access to the MDM

To harden SDC access to the MDM, it is possible to restrict access, pending approval of the SDC by the system. The default system setting is full access (restricted SDC mode is disabled). When the restricted SDC mode is enabled, volumes can only be mapped to “approved” SDCs. Approval is obtained by issuing the `--add_sdc` command for each SDC. You can set restricted mode before or after SDCs have been added to your network.

You can use the following commands:

<table>
<thead>
<tr>
<th>Action</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable or disable restricted SDC mode</td>
<td>set_restricted_sdc_mode command</td>
</tr>
<tr>
<td>Add an SDC to the approved list, when restricted SDC mode is enabled</td>
<td>--add_sdc</td>
</tr>
</tbody>
</table>
For more information, see the ScaleIO CLI Reference Guide.

**Add another IP address subnet to an MDM cluster**

Add an IP network to an existing MDM cluster.

**Before you begin**

This topic explains how to add another IP address subnet for use by the MDM cluster. This procedure addresses scenarios where the MDM cluster uses a single network, or when an existing network needs to be replaced by a different one.

---

**Note**

This procedure describes an example for a 3-node cluster, however, the procedure for a 5-node cluster is similar.

---

**Procedure**

1. Query the system to get the current cluster state/health:

   ```
 scli --query_cluster
   ```

   Cluster status is returned, where you can identify the Master, the Slave, and the Tie Breaker.

2. Switch to single cluster mode:

   ```
 scli --switch_cluster_mode --cluster_mode 1_node --remove_slave_mdm_id <mdm_slave_id> --remove_tb_id <tb_id>
   ```

3. Remove the standby MDM:

   ```
 scli --remove_standby_mdm --remove_mdm_id <mdm_slave_id>
   ```

4. Remove the Tie Breaker:

   ```
 scli --remove_standby_mdm --remove_mdm_id <tb_id>
   ```

5. Add the MDM as standby with its IP addresses (including the additional IP addresses):

   ```
 scli --add_standby_mdm --new_mdm_ip ip_1<,ip_2,...> --mdm_role manager --new_mdm_management_ip ip_1<,ip_2,...> --allow_asymmetric_ips --force_clean
   ```

   For example:

   ```
 scli --add_standby_mdm --new_mdm_ip 10.89.9.6,10.89.11.6 --mdm_role manager --new_mdm_management_ip 10.89.9.6,10.89.11.6 --allow_asymmetric_ips --force_clean
   ```
6. Add the Tie Breaker as standby with its IP addresses (including the additional IP addresses):

```
scli --add_standby_mdm --new_mdm_ip ip_1<,ip_2,...> --mdm_role tb --new_mdm_management_ip ip_1<,ip_2,...> --allow_asymmetric_ips --force_clean
```

7. Switch cluster operation back to a 3-node cluster:

```
scli --switch_cluster_mode --cluster_mode 3_node --add_slave_mdm_id <slave_id> --add_tb_id <tb_id>
```

For example:

```
scli --switch_cluster_mode --cluster_mode 3_node --add_slave_mdm_id 0x4520631c7262bbf1 --add_tb_id 0x3cde0ef516f61162
```

8. Query the system to get the current cluster state/health.

```
scli --query_cluster
```

Cluster status is returned, where you can check that the cluster is configured and operating as expected.

9. Switch MDM ownership to verify cluster functionality:

```
scli --switch_mdm_ownership --new_master_mdm_id <new_master_mdm_id>
```

For example:

```
scli --switch_mdm_ownership --new_master_mdm_id 0x4520631c7262bbf1
```

10. Query the system to get the current cluster state/health.

```
scli --query_cluster
```

Cluster status is returned, where you can check that the cluster is operating as expected.

11. Add IP addresses for the Master MDM (presently Slave MDM) by following steps 2, 3, 5, 7, and 8.

12. Optional: Switch MDM ownership back to the original MDM:

```
scli --switch_mdm_ownership --new_master_mdm_id MDM_ID
```
Managing the SDSs and cache

You can modify an SDS port while there is I/O running. You can also manage the system's cache, including Read Flash cache and Read RAM cache.

Modifying an SDS port during IO

If you need to modify an SDS port (on-the-fly) while there is IO running, perform the following steps:

**Note**

Sometimes, your network topology needs to be prepared for the addition of new port, and this may take some time. The ScaleIO system does not prevent unnecessary degraded status or disconnection of SDS. Therefore, in such situations, it is recommended to place the SDS in Maintenance Mode before commencing this procedure.

**Procedure**

1. On the SDS, perform one of the following, depending on the Operating System:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Run the script: <code>/opt/emc/scaleio/sds/bin/close_firewall_port.sh</code></td>
</tr>
<tr>
<td>Windows</td>
<td>From command line, run the batch file <code>C:\Program Files\EMC\scaleio\sds\bin\close_firewall_port.bat</code></td>
</tr>
</tbody>
</table>

2. Open the following SDS file with a text editor, and change the port number shown there to the new port number:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>/opt/emc/scaleio/sds/bin/port</code></td>
</tr>
<tr>
<td>Windows</td>
<td><code>C:\Program Files\EMC\scaleio\sds\bin\port</code></td>
</tr>
</tbody>
</table>

3. Open the following SDS configuration file with a text editor:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>File name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>/opt/emc/scaleio/sds/cfg/conf.txt</code></td>
</tr>
<tr>
<td>Windows</td>
<td><code>C:\Program Files\EMC\scaleio\sds\cfg\conf.txt</code></td>
</tr>
</tbody>
</table>

4. Add the parameter `tgt_port = <NEW_PORT_NUM>` to the file, where `<NEW_PORT_NUM>` represents the new port number.

5. Perform one of the following:
<table>
<thead>
<tr>
<th>Operating System</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Run the script: <code>/opt/emc/scaleio/sds/bin/open_firewall_port.sh</code></td>
</tr>
<tr>
<td>Windows</td>
<td>From command line, run the batch file <code>C:\Program Files\EMC\scaleio\sds\bin\open_firewall_port.bat</code></td>
</tr>
</tbody>
</table>

6. On the SDS, perform one of the following:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>Run the command:</td>
</tr>
<tr>
<td></td>
<td><code>Pkill sds</code></td>
</tr>
<tr>
<td>Windows</td>
<td>From command line, run the command:</td>
</tr>
<tr>
<td></td>
<td><code>net stop sds_service &amp; net start sds_service</code></td>
</tr>
</tbody>
</table>

7. On the MDM, modify the SDS port using the command:

```
scli --modify_sds_port (--sds_id <ID> | --sds_name <NAME> | --sds_ip <IP>) --new_sds_port <PORT>
```

For example, for an SDS called "sds198" where the new port number is 7071, type:

```
scli --modify_sds_port --sds_name sds198 --new_sds_port 7071
```

**Note**

If you modify the SDS port on the MDM first, instead of following the above procedure, IO errors might be encountered.

---

**Managing Read Flash cache**

This section describes how to manage the Read Flash Cache (RFcache) feature, which uses PCI flash cards, SSDs and NVMe SSDs for caching of the HDDs in the SDS, thus accelerating the reads of its HDD devices.

RFcache devices and configuration can be performed during initial system deployment. If you want to add the use of the RFcache feature after deployment, use the following work flow:

1. Ensure that the RFcache policy is enabled in the Storage Pool.
2. Enable RFcache in the SDSs where RFcache devices will be added.
3. Add the RFcache devices to the SDSs.
If you want to stop using the RFcache feature, or remove a specific RFcache device, use the following work flow:

4. Stop RFcache usage in the Storage Pool
5. Remove (command) the RFcache device from the SDS.
6. You can then do one of the following:
   - Physically remove the device from the chassis, and then restart RFcache usage in the Storage Pool
   - Add the device to the SDS as a storage device

Managing read RAM cache

This section describes how to manage the read RAM cache feature, which is designed to allocate RAM on nodes for caching of reads or writes. The feature is configured at the following levels:

- For a volume (optional)—specific volume to use or not use caching. If you want all I/Os for a specific volume to use caching, make sure that the volume, the corresponding Storage Pool, and its SDSs are all configured for using caching.
- For one or more Storage Pools—caching must be configured at this level for caching to work in the corresponding SDSs. When Storage Pools are created, caching is not automatically enabled by default, unless the `--use_rmcache` option is added to the `add_storage_pool` command. Write handling mode can also be configured via the `add_storage_pool` command, or in a separate command. To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the `ScaleIO CLI Reference Guide`.
- For individual SDSs—caching may be disabled at this level, even if caching in the corresponding Storage Pool is enabled. Cache size can be configured at the SDS level.

Read RAM Cache is disabled by default on Volumes and Storage Pools. SDSs, on the other hand, are enabled by default, but the Storage Pool setting overrides the SDS setting.

The amount of RAM you can allocate for cache is limited by the amount of RAM on the SDS server:

- If the RAM is less than 32 GB, 50% of memory can be used for cache
- If the RAM is more than 32 GB, 75% of memory can be used for cache

The maximum amount of RAM cache is described in Table 3 on page 26.

__Note__

Only blocks up to 128 k in size will be cached. Any blocks larger than 128k will be ignored by caching.

For a read to be stored in a specific SDS cache, you have to make sure that the cache on that SDS is enabled, and the relevant Storage Pool and the relevant volume are both configured to use cache.

SDC operations

Many SDC operations use `drv_cfg`. The `drv_cfg` command line is a local CLI utility that affects only the client on which the SDC is running. Possible SDC operations include...
updating the SDC driver with IP changes, detecting new volumes, querying volumes, loading a configuration file, adding an MDM, modifying an MDM IP address, enabling support of PDL state, and more.

**Updating the SDC driver with IP changes**

**Procedure**

1. Edit `drv_cfg.txt` and change the IP address in the last line to the new IP.

   **Location of `drv_cfg.txt`:**
   
   - **Linux:** `/bin/emc/scaleio/`
   - **Windows:** In the following registry key - `HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet\services\scini\Parameters\mdms`

   Enter the IP addresses as a comma-separated list.

   **Note**
   
   On ESXi, GUID and MDM lists are stored as module parameters, and not in a `drv_cfg.txt` file. To modify these parameters, use `esxcli` commands.

2. Save and close the file.

3. Type the following command:

   ```
 /etc/init.d/scini restart
   ```

**Detecting new volumes**

**Command**

```
drv_cfg --rescan
```

**Note**

This is not a CLI command, but rather an executable that is run on the SDC server.

**Syntax**

```
/opt/emc/scaleio/sdc/bin/drv_cfg --rescan
```

**Description/Notes**

Volumes are always exposed to the operating system as devices with the prefix `scini` (such as `/dev/scinia`, `/dev/scinib` and so on). Unique names can be found under `/dev/disk/by-id/`.

ScaleIO periodically scans the system to detect new volumes. You can initiate a scan for the most up-to-date status on a particular SDC node. This command is unique because it is not a CLI command, but rather a command issued on the specific SDC.

**Location of `drv_cfg` command:**
- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

For further details on how to set the mounting options see [Mounting ScaleIO](#) on page 237.

**Parameters**

Not applicable.

**Query volumes using `drv_cfg`**

**Command**

```
drv_cfg --query_vols
```

**Note**

This is not a CLI command, but rather an executable that is run on the SDC server.

**Syntax**

```
/opt/emc/scaleio/sdc/bin/drv_cfg --query_vols
```

**Description/Notes**

This utility retrieves information about all known active volume objects in kernel mode. You can use this utility to determine which volumes are mapped, and the ID of each volume in the ScaleIO system.

**Location of `drv_cfg` command:**

- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

**Example**

```
/opt/emc/scaleio/sdc/bin/drv_cfg --query_vols
```

**Query tgt objects using `drv_cfg`**

**Command**

```
drv_cfg --query_tgts
```

**Note**

This is not a CLI command, but rather an executable that is run on the SDC server.
Managing System Objects

Syntax

```
/opt/emc/scaleio/sdc/bin/drv_cfg --query_tgts
```

Description/Notes

This utility retrieves information about all known active tgt objects in kernel mode.

Location of `drv_cfg` command:
- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

Example

```
/opt/emc/scaleio/sdc/bin/drv_cfg --query_tgts
```

Query GUID using `drv_cfg`

Command

```
drv_cfg --query_guid
```

Note

This is not a CLI command, but rather an executable that is run on the SDC server.

Syntax

```
/opt/emc/scaleio/sdc/bin/drv_cfg --query_guid
```

Description/Notes

This utility retrieves the unique ID of the kernel module. The utility can be used to verify that all SDC GUIDs in the system are unique.

Location of `drv_cfg` command:
- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

Note

If the SDC was removed and reinstalled, the GUID of the SDC will be different to its original GUID. In such a case, you may need to remove the SDC, if two SDCs now have the same GUID.
Example

/opt/emc/scaleio/sdc/bin/drv_cfg --query_guid

Query MDMs using drv_cfg

Command

drv_cfg --query_mdms

Note
This is not a CLI command, but rather an executable that is run on the SDC server.

Syntax

/opt/emc/scaleio/sdc/bin/drv_cfg --query_mdms

Description/Notes

This utility retrieves information about all known MDM objects in kernel mode. This utility is typically used to determine to which MDM an SDC is connected.

Location of drv_cfg command:

- Linux: /opt/emc/scaleio/sdc/bin/drv_cfg
- Windows: C:\Program Files\emc\scaleio\sdc\bin\drv_cfg
- ESX: Contact Customer Support for access to this tool.

Example

/opt/emc/scaleio/sdc/bin/drv_cfg --query_mdms

Loading a configuration file using drv_cfg

Command

drv_cfg --load_cfg_file

Note
This is not a CLI command, but rather an executable that is run on the SDC server.
This command can not be used on ESX servers. Instead, follow the steps described in “Modifying configuration parameters on ESX servers”.
Syntax

```
/opt/emc/scaleio/sdc/bin/drv_cfg
--load_cfg_file <FILE_NAME>
```

Description/Notes

This utility reads a configuration file containing MDM IP addresses, and calls the kernel to connect to them.

Location of `drv_cfg` command:

- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

The configuration file that is loaded when using the `drv_cfg --load_cfg_file` utility is not persistent; when you restart the SDC, the changes will be lost.

To make the changes persistent, perform either of the following:

- Install the SDC on every server that will expose ScaleIO volumes to the application running, by executing the following command:

  ```
 MDM_IP=<IP of the MDM> rpm -i <full rpm file path>
  ```

- Use the following `drv_cfg` command:

  ```
 /opt/emc/scaleio/sdc/bin/drv_cfg --mod_mdm_ip
 --ip <EXISTING_MDM_IP_ADDRESS> --new_mdm_ip <NEW_MDM_IP_ADDRESSES>
  ```

Example

```
/opt/emc/scaleio/sdc/bin/drv_cfg
--load_cfg_file /bin/emc/scaleio/drv_cfg.txt
```

Adding an MDM using `drv_cfg`

Command

```
drv_cfg --add_mdm
```

Note

This is not a CLI command, but rather an executable that is run on the SDC server.

This command can not be used on ESX servers. Instead, follow the steps described in “Modifying configuration parameters on ESX servers”.

Syntax

```
/opt/emc/scaleio/sdc/bin/drv_cfg --add_mdm --ip <MDM_IP_ADDRESS_LIST>
```

Description/Notes

This utility calls the kernel module to connect to an MDM. This command is typically used in cases where an SDC is connected to more than one ScaleIO system.

**Location of `drv_cfg` command:**
- **Linux:** /opt/emc/scaleio/sdc/bin/drv_cfg
- **Windows:** C:\Program Files\emc\scaleio\sdc\bin\drv_cfg
- **ESX:** Contact Customer Support for access to this tool.

**Note**
Extending your ScaleIO system with another MDM requires that you update all SDCs in your system with the new MDM IP address. Run the `drv_cfg` utility with the `--mod_mdm_ip` option (see "Modifying an MDM IP address using `drv_cfg`"), and to make the change persistent, use the `--file` parameter. In addition, any additional objects or systems which interface with the MDM must also be updated. For more information, see "Modifying an MDM's management IP address" in the *ScaleIO CLI Reference Guide*.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--ip &lt;MDM_IP_ADDRESS_LIST&gt;</code></td>
<td>List of IP addresses (comma delimited) for this Master or Slave MDM</td>
</tr>
</tbody>
</table>

Optional:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--file &lt;CONFIG_FILE_NAME&gt;</code></td>
<td>Name of the configuration file to which the MDM information should be written</td>
</tr>
<tr>
<td><code>--only_cfg</code></td>
<td>Do not call the kernel to actually connect</td>
</tr>
</tbody>
</table>

Example

```
/opt/emc/scaleio/sdc/bin/drv_cfg --add_mdm --ip 10.100.22.20,10.100.22.30 --file /bin/emc/scaleio/drv_cfg.txt
```

**Modifying an MDM IP address using `drv_cfg`**

**Command**

```
drv_cfg --mod_mdm_ip
```
Note
This is not a CLI command, but rather an executable that is run on the SDC server. This command can not be used on ESX servers. Instead, follow the steps described in “Modifying configuration parameters on ESX servers”.

Syntax

```
/opt/emc/scaleio/sdc/bin/drv_cfg --mod_mdm_ip
 --ip <EXISTING_MDM_IP_ADDRESS>
 --new_mdm_ip <NEW_MDM_IP_ADDRESSES> [--file <CONFIG_FILE_NAME>]
 """only_cfg"
```

Description/Notes
This utility calls the kernel to modify an MDM’s IP address list. It is typically used in cases when an MDM IP address has changed, or when MDMs are added/removed from/to the system. The command must be run on every SDC in the system. To bring the changes into effect, a server restart is required.

Location of `drv_cfg` command:
- **Linux**: `/opt/emc/scaleio/sdc/bin/drv_cfg`
- **Windows**: `C:\Program Files\emc\scaleio\sdc\bin\drv_cfg`
- **ESX**: Contact Customer Support for access to this tool.

Note
Extending your ScaleIO system with another MDM requires that you update all SDCs in your system with the new MDM IP address. Ensure that you run this command on all SDCs. For more information, see the last step in Replacing a cluster member without adding a new server to the cluster on page 102.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--ip &lt;EXISTING_MDM_IP_ADDRESS&gt;</td>
<td>One of the existing MDM IP addresses</td>
</tr>
<tr>
<td>--new_mdm_ip &lt;NEW_MDM_IP_ADDRESSES&gt;</td>
<td>The new IP address list (comma delimited) for this MDM. If you want to retain the existing address(es), include them in this list.</td>
</tr>
<tr>
<td>--file &lt;CONFIG_FILE_NAME&gt;</td>
<td>The name of the configuration file to which the MDM information should be written</td>
</tr>
<tr>
<td>--only_cfg</td>
<td>Do not call the kernel to actually connect</td>
</tr>
</tbody>
</table>
Example

```
/opt/emc/scaleio/sdc/bin/drv_cfg --mod_mdm_ip --ip 10.100.20.20 --new_mdm_ip 10.100.20.20,10.100.20.30,10.100.20.40
```

Permanent Device Loss state

When the MDM has disconnected from the SDC and a volume mapped to this SDC has experienced an I/O error, the ESXi host continuously sends I/Os to the device to determine if the device has become accessible. This can subsequently cause a high I/O-error load that can lead to the host freezing. In cases where the device is disconnected long-term, such as when the entire MDM cluster is down during a network upgrade, the SDC can change the volume state to Permanent Device Loss (PDL) to prevent more I/O errors coming from the ESXi.

PDL is an ESXi state, which, once enabled, is supported in ScaleIO. Once the ESXi host loses connectivity with a device, if a timeout value is reached, the ESXi will be notified that the device is in a PDL state. The timeout value can be manually set. Once a device is in a PDL state, the ESXi host no longer attempts to re-establish connectivity or issue commands to the device.

Recovering a device from PDL state is described in the VMware documentation for your operating system version. The following link is for ESXi v6.5: https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.storage.doc/GUID-A513D44C-71DE-47ED-B781-327F78659404.html
Use the instructions that match your environment.

Enabling support of PDL state on the ESXi

Enable support of Permanent Device Loss (PDL) state on the ESXi host.

Procedure

1. On the ESXi host:
   ```
esxcli system module parameters set -m scini "<<PREVIOUS_MODULE_PARAMS>> blkDevIsPdlActive=1 blkDevPdlTimeoutMillis=<TIMEOUT_VALUE>"
   ```
   where:
   - `<<PREVIOUS_MODULE_PARAMS>>` is any previous module parameters being used for this ESXi host.
   - `<TIMEOUT_VALUE>` is the timeout time in milliseconds. Its value can be 1000-3600000 (default is 60000) and including it in the command is optional.

2. Reboot the host.
Disabling support of PDL state on the ESXi

Disable support of Permanent Device Loss (PDL) state on the ESXi host.

Procedure
  1. On the ESXi host:

     ```
esxcli system module parameters set -m scini
 "<<PREVIOUS_MODULE_PARAMS>> bBlkDevIsPdlActive=0"
     ```

     where `<<PREVIOUS_MODULE_PARAMS>>` is any previous module parameters being used for this ESXi host.

  2. Reboot the host.

Managing ESX servers

Using the following procedures, you can modify parameters on ESX servers and check the SDC state on ESX servers.

Modifying parameters on ESX servers

On an SDC running on an ESX server, esxcli commands can be used in the following cases:

- MDM IP addresses need to be added to the existing list on an SDC
- MDM IP addresses need to be replaced on an SDC
- The SDC’s GUID needs to be changed

Specifically, the SDC’s GUID or IP address needs to be identified, and then used to add or modify the MDM IP addresses or GUID (depending on the parameter that you want to modify). If you want to add additional MDM IP addresses to existing ones, you must list both old and additional IP addresses in the esxcli command.

For more information about SDC tuning, see *ScaleIO Performance Fine-Tuning Technical Notes*.

If the current configuration of the ScaleIO system is registered with a v2.0 VMware plug-in, you can use the plug-in Update SDC parameters to update the MDM IP addresses. For more information, see the *EMC ScaleIO Deployment Guide*.

**Note**

These procedures require a server restart to apply the new configuration. The configuration will remain persistent after future server restarts.

To configure MDM IP addresses on the SDC, perform these steps:

Procedure
  1. Find the SDC’s GUID and the MDM IP addresses configured on the ESX, by typing the command:

     ```
esxcli system module parameters list -m scini
     ```

  2. In the output of the command, find the existing GUID and MDM IP addresses.
For example, in the output excerpt below, the GUID and IP addresses are marked in bold:

**ioctlIniGuidStr string**
39b89295-5cfc-4a42-bf89-4cc7e55a1e5b Ini Guid, for example:
12345678-90AB-CDEF-1234-567890ABCDEF

**ioctlMdmIPStr string**
9.99.101.22,9.99.101.23 Mdms IPs, IPs for MDM in same cluster should be comma-separated. To configure more than one cluster use '+' to separate between IPs. For Example:
10.20.30.40,50.60.70.80+11.22.33.44. Max 1024 characters

3. To configure the MDM IP addresses on the SDC, type the command

```bash
esxcli system module parameters set -m scini -p "ioctlIniGuidStr=<GUID> ioctlMdmIPStr=<MDM_IPS>"
```

where `<GUID>` is the existing SDC GUID that you identified in the previous step, and `<MDM_IPS>` is the list of MDM IP addresses. A maximum of 1024 characters is allowed.

a. To replace the old MDM IP addresses with new MDM IP addresses, omit the old addresses from the command.

b. To add MDM IP addresses to the existing IP addresses, type both the existing IP addresses and the new IP addresses in the command.

MDM IP addresses for MDMs in same cluster must be comma-separated. To configure more than one cluster, use '+' to separate between IP addresses in different clusters. For example:

```bash
esxcli system module parameters set -m scini -p "ioctlIniGuidStr=39b89295-5cfc-4a42-bf89-4cc7e55a1e5b ioctlMdmIPStr=10.20.30.40,50.60.70.80+11.22.33.44"
```

4. To apply the new configuration, restart the ESX server.

To change the GUID of the SDC, perform these steps:

5. Find the SDC’s GUID and the MDM IP addresses configured on the ESX, by typing the command

```bash
esxcli system module parameters list -m scini
```

6. In the output of the command, find the existing GUID and MDM IP addresses.
For example, in the output excerpt below, the GUID and IP addresses are marked in bold:

```
IoctlIniGuidStr string 39b89295-5cfc-4a42-bf89-4cc7e55a1e5b Ini Guid, for example:
12345678-90AB-CDEF-1234-567890ABCDEF
```

```
IoctlMdmIPStr string 9.99.101.22,9.99.101.23 Mdm IPs, IPs for MDM in same cluster should be comma-separated. To configure more than one cluster use '+' to separate between IPs. For Example:
10.20.30.40,50.60.70.80+11.22.33.44. Max 1024 characters
```

7. To change the GUID on the SDC, type the command

```
esxcli system module parameters set -m scini -p "IoctlIniGuidStr=<NEW_GUID> IoctlMdmIPStr=<MDM_IPS>"
```

where `<NEW_GUID>` is the new SDC GUID, and `<MDM_IPS>` is the list of MDM IP addresses that you identified in the previous step. You must include these IP addresses in the command.

For example:

```
esxcli system module parameters set -m scini -p "IoctlIniGuidStr=28a78184-4beb-4a42-bf89-4cc7e55a1e5b IoctlMdmIPStr= 9.99.101.22,9.99.101.23"
```

8. To apply the new configuration, restart the ESX server.

**Checking the SDC state on ESX servers**

On an SDC running on an ESX server, an esxcli command can be used to check the current state of the SDC.

To display the SDC state on the ESX server, type the following command:

```
esxcli system module list |grep scini
```

The following examples show typical outputs of the command:

- Output where driver is installed and enabled to load, but not loaded:

```
Name Is Loaded Is Enabled
----------------------------- --------- ----------
scini false true
```

- Example of SDC in correct state (enabled and loaded):

```
Name Is Loaded Is Enabled
----------------------------- --------- ----------
scini true true
```
CHAPTER 7

Security Management

The following topics describe security management in ScaleIO.

- Setting up SSH authentication on the ScaleIO Gateway .................................. 124
- Configuring SSL component authentication .................................................... 124
- Managing SDC access to the MDM ................................................................. 128
- Approved encryption methods ..................................................................... 129
- Login banner overview .............................................................................. 129
Setting up SSH authentication on the ScaleIO Gateway

A manually generated public-private key pair can be used to perform SSH key authentication, instead of passwords, between the ScaleIO Gateway and ScaleIO system servers. For more information, see “Using SSH authentication on the ScaleIO Gateway” in the ScaleIO Deployment Guide.

Configuring SSL component authentication

ScaleIO uses SSL authentication to authenticate both internal system components, and communication between the MDM and external components such as the ScaleIO Gateway, GUI clients, vSphere plug-in, and CLI clients. Secure communication is typically installed and configured by default during system deployment.

Note

If your system has been upgraded from a version earlier than version 2.0, or if secure communication between components was disabled during installation, follow the instructions provided in the section “Switching to secured authentication mode” in the ScaleIO Deployment Guide.

Internal component authentication

When this feature is enabled, the MDM generates a self-signed certificate for itself, and the SDSs generate certificates signed by the MDM’s certificate. The MDM has a single certificate for the entire cluster. The certificate is stored in the MDM repository.

Each SDS has its own SSL certificate file:

- **Linux**: /opt/emc/scaleio/sds/cfg/sds_certificate.pem
- **Windows**: C:\Program Files\emc\scaleio\sds\cfg\sds_certificate.pem

When an SDS is added to the cluster, the MDM receives a CSR (Certificate Signing Request) from the SDS, signs it with its own internal certificate and returns it to the SDS to be stored in its local key-store. If the SDS disconnects and reconnects, the MDM must authenticate it.

External component authentication

Secure communications can be performed between the MDM and the following external components, and are typically enabled during deployment of the system:

- **ScaleIO Gateway**—The ScaleIO Gateway maintains the SSL certificates for itself and for the following components:
  - SNMP
  - REST API
  - IM
  - vSphere plug-in
  - GUI
CLI

Workflow for self-signed security certificates

The system generates and signs self-signed certificates automatically when secure communication is enabled, and no user intervention is required. If you want to replace these certificates with new self-signed ones, follow this workflow:

Procedure
1. Run the command `scli --generate_mdm_certificate`.
   To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.
2. When using the CLI, on the first connection to the MDM, the CLI will display the MDM's certificate and will prompt the user to approve the certificate.
   Upon approval, the trusted certificate will be saved.
3. When using the GUI, approve the MDM certificate at login, and then approve other certificates using the System Settings menu, Renew Certificates option.

Workflow for externally signed security certificates

The system generates and signs self-signed certificates automatically when secure communication is enabled, and no user intervention is required. If you want to replace these certificates with ones signed by an external Certificate Authority, follow this workflow:

Procedure
1. Log in to the system using the `scli --login` command as either a root user (on Linux) or as an administrator (on Windows).
2. Generate a CSR file, using the command `scli --generate_mdm_csr_file --target_mdm_ip <IP_ADDRESS>`.
   A file called `mdm-target_hostname.csr` will be created in the location:
   a. Linux: `/opt/emc/scaleio/mdm/cfg`
   b. Windows: `C:\Program Files\emc\scaleio\mdm\cfg`
   To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.
3. Submit the CSR file created in the previous step to your Certificate Authority.
   The Certificate Authority must sign your CSR and return two files to you:
   a. Certificate for your MDM
   b. Certificate Authority “Trusted” or “Root” certificate
4. Save the signed certificate for the MDM in the location:
   a. Linux: `/opt/emc/scaleio/mdm/cfg`
   b. Windows: `C:\Program Files\emc\scaleio\mdm\cfg`
5. Manually change the MDM certificate’s file name to `mdm_signed_certificate.pem`.
6. Run the following script on the directory:

```bash
./apply_signed_certificate.py --mdm_ip <IP_address> --local_mdm_ip <IP_address>
```

where `--mdm_ip` is the IP address of the Master MDM, and `--local_mdm_ip` is the IP address of the MDM where you want to change the certificate.

If the remote read-only feature is enabled on the MDM, add `--skip_cli_command` to the command, and later, while logged in with security permissions, run the command `scli --replace_mdm_security_files`.

**Note**

This step changes the MDM certificate, and might cause a brief single point of failure period (switch ownership).

7. For all external components that will communicate with the MDM (GUI, CLI, vSphere Plugin, REST, IM) add the Trusted or Root certificate from the Certificate Authority to each component.

   The Trusted/Root certificate must be added to the file called `truststore.jks`, using Keytool.

   For more information, see Using Keytool to add certificates to external components on page 126.

8. When using the CLI, on the first connection to the MDM, the CLI will display a message similar to the following:

```bash
[root@112CC-4~]# scli --login --username admin --password Scaleio018 Certificate required for issuer: /C=US/ST=MA/L=Hopkinton/O=EMC-Scaleio1213/CN=Scaleio018 Please add the certificate with scli --add_certificate
```

Add the Trusted/Root certificate using the `--add_certificate` command. For more information, see the ScaleIO CLI Reference Guide.

---

**Using Keytool to add certificates to external components**

This topic explains how to add Certificate Authority certificates to ScaleIO external components. The `truststore.jks` file located on all components saves all the MDM/LIA certificates approved by the client. The file's location depends on the management client and operating system:

**Gateway**

- **Linux:**
  
  `/opt/emc/scaleio/gateway/webapps/ROOT/WEB-INF/classes/certificates`

- **Windows (64-bit):**
Using Keytool

Use the Java Keytool utility to modify or view the content of the trust store file. The remainder of this topic lists some useful Keytool commands. Keytool is a part of the Java (JRE or JDK) installation and can be found in the bin directory. You can add -storepass changeit to all commands that require a password. The password for the trust store is "changeit" (Java default).

Note

The certificate alias must be unique in the trust store file. We usually use the certificate's full subject.

For example: givenname=mdm, ou=asd, o=emc, l=hopkinton, st=massachusetts, c=us, cn=centos-6.4-adi5

- List the certificates in the trust store:

  ```
 keytool -list -v -keystore [path_to_certificates_folder]/truststore.jks
  ```

  Example:

  ```
 keytool -list -v -keystore C:\Users\cj\AppData\Roaming\EMC\scaleio\certificates\truststore.jks
  ```

- Check a particular entry using an alias:

  ```
 keytool -list -v -keystore [path_to_certificates_folder]/truststore.jks -alias [unique_alias] -storepass changeit
  ```
Managing SDC access to the MDM

To harden SDC access to the MDM, it is possible to restrict access, pending approval of the SDC by the system. The default system setting is full access (restricted SDC mode is disabled). When the restricted SDC mode is enabled, volumes can only be mapped to “approved” SDCs. Approval is obtained by issuing the --add_sdc command for each SDC. You can set restricted mode before or after SDCs have been added to your network.

You can use the following commands:

<table>
<thead>
<tr>
<th>Action</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a certificate from the trust store:</td>
<td>keytool -delete -alias [unique_alias] -keystore [path_to_certificates_folder]/truststore.jks</td>
</tr>
<tr>
<td>Export a certificate from the trust store:</td>
<td>keytool -export -alias [unique_alias] -file [certificate_file_path] -keystore [path_to_certificates_folder]/truststore.jks</td>
</tr>
</tbody>
</table>
Enable or disable restricted SDC mode | set_restricted_sdc_mode command
---|---
Add an SDC to the approved list, when restricted SDC mode is enabled | --add_sdc

For more information, see the *ScaleIO CLI Reference Guide*.

## Approved encryption methods

A specific set of encryption methods are approved for use with your system.

The following encryption methods are approved for use:

- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_RSA_WITH_AES_256_CBC_SHA256

**Note**

In order to use CURL on RHEL6 with ScaleIO Gateway v2.0.0.3 and higher, upgrade the NSS package to 3.21.0. (use the YUM update command).

## Login banner overview

A login banner is a text file that is displayed upon login to the system. It can be used to communicate messages or to obtain user consent to real-time monitoring of information and retrieval of stored files.

When the login banner is set up, it appears during the system login process before the login credential prompts. The login banner displays differently in the ScaleIO GUI and CLI interfaces:

- **GUI:**
  - When logging in, the login banner is displayed, and must be approved.
- **CLI:**
- When logging in, the user is prompted to press any key, after which the banner is displayed.
- To continue, the banner must be approved.

Limitations:
- Only users with administrative security rights can set up, update, or remove the login banner.
- Supported in Windows and RHEL operating systems.
- Text files up to 16 bytes are supported.
- Only one login banner is supported.

Setting up a login banner using the CLI

You can use the CLI to set up, modify, or stop displaying a login banner.

Before you begin

Ensure that you have access to the IP address of the Master MDM.

Procedure

1. Log in to the ScaleIO system using the IP address of the Master MDM.
2. Perform the desired operation:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| Create (or modify) a new banner       | a. Create a text file (or modify an existing file) with the message that you want to display in the login banner.  
b. Run the following command:  

```
scli --set_login_banner --filename <FILENAME>
```

where `<FILENAME>` is the path of the login banner text file.  
The login banner is displayed the next time a user logs into the ScaleIO system. |
| Stop displaying the banner            | a. Run the following command:  

```
scli --set_login_banner --remove_banner
```

Enabling or disabling preemptive acceptance of the login banner

Preemptive acceptance of the login banner allows the user to bypass the login banner, for example, when running scripts. A user with admin security rights can enable or disable the option of preemptive acceptance. By default, preemptive acceptance is enabled and the login banner can be bypassed using a CLI command.

Before you begin

To enable or disable the preemptive acceptance option, you must have administrative rights.
Procedure

1. Log in to ScaleIO:

   ```
 scli --login --username admin --password <PASSWORD>
   ```

2. Run the following command to enable preemptive acceptance:

   ```
 scli --set_cli_login_banner_preemptive_acceptance --enable
   ```

3. Run the following command to disable preemptive acceptance:

   ```
 scli --set_cli_login_banner_preemptive_acceptance --disable
   ```

### Activating preemptive acceptance of the login banner

When preemptive acceptance of the login banner is enabled (default), you can log in to ScaleIO in a special way that activates preemptive acceptance of the login banner.

**Before you begin**

Preemptive acceptance of the login banner is enabled.

**Procedure**

1. Log in to ScaleIO with the `accept_banner_by_scripts_only` parameter:

   ```
 scli --login --username <USERNAME> --accept_banner_by_scripts_only
   ```

   where `<USERNAME>` is the user running the script.
CHAPTER 8

Opening the GUI and Logging In

The following topics describe how to open the GUI, and log in procedures

- Log in to the ScaleIO GUI .......................... 134
- Connection and disconnection information .............................................. 134
Log in to the ScaleIO GUI

Open and log in to the ScaleIO GUI.

Before you begin

Ensure that:

- The GUI software is installed on the workstation. To install the GUI, see "Install the ScaleIO GUI."
- You have these credentials (available from the administrator):
  - MDM management IP address or hostname
  - Username (default: admin)
  - Password (defined during deployment)

Procedure

1. Open the GUI:
   - Linux: Run the script /opt/emc/scaleio/gui/run.sh.
   - Windows: Click Start > All Programs > ScaleIO GUI
   The initial login screen is displayed.
2. Type the IP address or hostname and click Connect.
   If a certificate notice is displayed, review and accept the certificate.
   If a login banner is displayed, confirm it to continue.
3. In the login screen, type the username and password, and click Login.

Results

The ScaleIO GUI is displayed.

After you finish

Users and passwords are configured with the ScaleIO CLI. For more information, see the "Security" chapter of the ScaleIO User Guide.

Connection and disconnection information

You can check at any time to which IP address your GUI is connected, using the following methods:

- View the IP address displayed in the top left corner of the GUI window.
- Hover your mouse pointer over the Management tile on the Dashboard. A tooltip displays connection information for the nodes in the MDM cluster, and the management IP addresses
  If your GUI loses its connection with the MDM, the window display is dimmed, and a notification dialog box is displayed.
CHAPTER 9

GUI Features

The following topics describe GUI features.

- GUI overview ................................................................. 136
- GUI conventions ............................................................. 136
- Dashboard view ............................................................... 138
- Frontend views ............................................................... 146
- Backend view ................................................................. 149
- Alerts view ................................................................. 155
- Property Sheets ................................................................. 156
GUI overview

Use the Graphical User Interface (GUI) to monitor and configure ScaleIO. The various windows display different views and data that are beneficial to the storage administrator. You can review the overall status of the system, drill down to the object level, and monitor these objects. You can use the GUI to provision and modify many of the objects.

The following sections in this chapter describe the available windows, and how to use them. The Glossary at the end of this publication provides more detailed information about the objects and properties displayed in the GUI. Your user privileges control the features displayed by the GUI. If you cannot access certain commands, check whether you have the appropriate user permissions, and if necessary, contact your system administrator for assistance.

The following table provides a general overview of the tasks that you can perform with the GUI.

Table 11 GUI task overview

<table>
<thead>
<tr>
<th>To do this...</th>
<th>Use...</th>
</tr>
</thead>
<tbody>
<tr>
<td>See a general overview of the entire system</td>
<td>Dashboard view—see Dashboard view on page 138</td>
</tr>
<tr>
<td>See detailed information about one or more backend system objects, in table format (filtering available)</td>
<td>Backend view—see Backend view on page 149</td>
</tr>
<tr>
<td>See detailed information about one or more frontend system objects, in table format (filtering available)</td>
<td>Frontend views—see Frontend views on page 146</td>
</tr>
<tr>
<td>See very detailed information about a specific system object</td>
<td>Property Sheets—see Property Sheets on page 156</td>
</tr>
<tr>
<td>Minimize the main window to a floating widget</td>
<td>Widget—see Widget on page 140</td>
</tr>
<tr>
<td>See a list of errors and alerts currently active in the system</td>
<td>Alerts view—see Alerts view on page 155</td>
</tr>
<tr>
<td>Add, remove, maintain, or configure a system object (backend)</td>
<td>Backend view—see Configuring the System using the GUI on page 163</td>
</tr>
<tr>
<td>Add, remove, or configure volumes, snapshots or SDCs</td>
<td>Frontend views—see Configuring the System using the GUI on page 163</td>
</tr>
<tr>
<td>Monitor various aspects of your system</td>
<td>Backend and Frontend views—see Monitoring the System using the GUI on page 161</td>
</tr>
<tr>
<td>Find information about your system’s license</td>
<td>System Settings menu—see Viewing licensing information on page 162</td>
</tr>
</tbody>
</table>

GUI conventions

This section describes conventions used in the ScaleIO GUI, including alert indicators and color codes.
Alerts indicators

The Alerts indicators show the overall error state of the system. When lit, indicators show the number of active alerts of each severity. Similar indicators are displayed in some views of the Backend table, and also on Property Sheets (in some cases, an additional blue indicator for information only is included). You can view details about the alerts active in the system in the Alerts view. For more information about Alerts, see Alerts view on page 155 and ScaleIO Alerts in SNMP, GUI, REST, and ESRS on page 277.

**Figure 16 Alerts indicators**

![Alerts indicators](image)

Color codes

Color codes provide quick visual feedback on the status of various objects in the system. The following tables summarize the colors used in the system, and their meaning. The color codes are used in a variety of elements and views in the user interface.

**Table 12 GUI color codes**

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
<th>Dashboard View</th>
<th>Backend View</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT GREEN</td>
<td>Available protected, healthy storage</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(protected)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>One or more SDSs are in Maintenance Mode, and part of those SDSs’ capacity is temporarily protected on other SDSs</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(in maintenance)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>Snapshot capacity (yellow outline)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity-related statuses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORANGE</td>
<td>Data is not protected</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(degraded)</td>
<td>Rebuild or Rebalance in progress</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>Data is unavailable</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(failed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DARK GRAY</td>
<td>Unused capacity</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No activity or zero values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DARK GRAY striped with RED</td>
<td>System is unable to determine if capacity is Unavailable or Unused</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PALE GRAY</td>
<td>Decreased capacity. This capacity exists physically, but has been disabled (typically to allow maintenance tasks on devices).</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Table 12 GUI color codes (continued)

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
<th>Dashboard View</th>
<th>Backend View</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE (spare)</td>
<td>Capacity reserved for recovery purposes</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>BRONZE</td>
<td>Volume capacity</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>DARK BLUE</td>
<td>Indicates selected items in the filter</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 13 Alert symbols and color codes

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
<th>Dashboard View</th>
<th>Backend View</th>
<th>Alert View</th>
</tr>
</thead>
<tbody>
<tr>
<td>YELLOW</td>
<td>Low alert status</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ORANGE</td>
<td>Medium alert status</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RED</td>
<td>High alert status</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LIGHT BLUE</td>
<td>Information message (no faults)</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Dashboard view

The Dashboard displays the overall system status. Each tile displays a certain aspect of the storage system. Various controls let you customize the information displayed on the Dashboard. The following figure shows the Dashboard controls.
Navigation tree

The Dashboard’s navigation button toggles the display of the navigation tree. The navigation tree is hierarchical, and controls the Dashboard display. You can display information on the Dashboard according to:

- Entire system (default)
- Protection Domain
- Storage Pool

You can change the Dashboard display by double-clicking the desired navigation tree node. Some tiles on the Dashboard may be dimmed if they are not relevant for the node that you have selected.

**System Settings and Logout menus**

The **Logout** menu lets you do the following:
- View the user name of the user currently logged in to the system (default)
- Log out of the system

The **System Settings** menu lets you do the following:
- Open the **System Settings** window, where you can configure and view license and certificate information.
- Open the **User Preferences** window, where system preferences can be set. For more information, see [Customizing system preferences](#) on page 201.
- Display information about your system, including information required for licensing (**About** option). For more information, see [Viewing licensing information](#) on page 162.

**Dimmer**

The **Dimmer** button toggles the dimmer feature on and off. When you use the dimmer, only tiles that are essential for real-time monitoring are lit. You can temporarily light up the dimmed tiles by hovering the mouse pointer over them.

**Widget**

The **Widget** button reduces the dashboard size to a widget containing a condensed display of the storage system. The widget floats on your desktop, allowing you to visually monitor your system while using other applications. The widget displays the **Capacity** tile, Workload activity, Rebuild/Rebalance activity, and Alerts indicators.

When the dashboard is minimized to a widget, the **Full-Screen** button is displayed in the top-right-corner, as shown in the following figure. This button toggles the display back to full dashboard mode.
Dashboard tiles

The Dashboard tiles provide a visual overview of storage system status. The tiles are dynamic, and contents are refreshed at the interval set in the system preferences (default: 10 second intervals). System preferences can also be used to set the display to basic or advanced reporting. For more information, see Customizing system preferences on page 201.

Some of the tiles’ contents differ, depending on the navigation filter in use. When the dimmer feature is enabled, the display of non-essential tiles is dimmed, unless the mouse pointer is positioned over them.

Active alert statuses relevant for specific tiles are indicated by red, orange or yellow symbols on those tiles. These indicators show that one or more alerts are active, but not the number of alerts.

---

**Note**

The filter used in the Backend view does not influence the Dashboard display.
The following table describes the tiles displayed on the Dashboard.

**Table 14 Dashboard tiles**

<table>
<thead>
<tr>
<th>Tile</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 - Capacity | Displays the raw capacity of the system, rounded off to multiples of 8 GB. The available raw capacity is represented by concentric rings outwards from the center:  
**Outer Ring**
Displays the storage usage using the color codes described in the legend. The actual values are written next to the colored segments. The icon in the bottom right corner of the tile displays the color code legend. The outer ring is divided into colors as follows:  
- *In use*—From the total, in clockwise direction: shows healthy, degraded and failed capacity. The total of these three items is equal to the sum of capacity in use.  
- *Unused*—Shows how much further the raw capacity can be expanded; if this capacity is not accessible, it will be marked as Unavailable Unused.  
- *Special purpose*—Shows spare capacity reserved for system operation; Decreased capacity that was deducted from devices (using the Set Device Capacity Limit command), and cannot be used.  

**Note**
A miniature version of the outer Capacity ring is shown in some Backend table views and Property Sheets. |
<table>
<thead>
<tr>
<th>Tile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center circle</td>
<td>Displays the total amount of available raw storage.</td>
</tr>
<tr>
<td>Note</td>
<td>Total available raw storage does not represent the total amount of capacity available for volume allocation.</td>
</tr>
<tr>
<td>Inner Ring</td>
<td>Displays the snapshot usage. The arc displays the total amount of available data. The filled (bronze) part represents the capacity used by original data volumes, and the hollow (outlined) part represents the capacity used for snapshot volumes. This displays the ratio of snapshot usage. To get a more accurate idea of snapshot usage, see the Backend Capacity Usage view.</td>
</tr>
<tr>
<td>2 - I/O Workload</td>
<td>Displays the performance statistics of the system (IOPS, bandwidth and I/O size). More details about I/O can be viewed in the Backend table views: Application I/O, Overall I/O, and I/O Bandwidth.</td>
</tr>
<tr>
<td></td>
<td>In Advanced Dashboard view (controlled by system Preferences—see Customizing system preferences on page 201) aggregated values of bandwidth and IOPS are displayed.</td>
</tr>
<tr>
<td></td>
<td>The table in this tile summarizes the Reads, Writes and Totals of IOPS, and throughput and the average size of an I/O.</td>
</tr>
<tr>
<td>3 - Internal I/O</td>
<td>The tile displays the system's internal I/O. Clicking on the arrow icon cycles through total internal I/O, internal I/O due to migration, and internal I/O due to rebalance operations.</td>
</tr>
<tr>
<td>4 - Rebuild</td>
<td>Indicates if ScaleIO is currently rebuilding RAID 1 data. A rebuild is usually a result of a recovery due to failure of a server or a storage device.</td>
</tr>
<tr>
<td></td>
<td>The tile displays the rate in which the data is rebuilt, using a large orange font and icon. Capacity that is still pending rebuild is displayed in small white fonts. In Advanced Dashboard view (controlled by system User Preferences—see Customizing system preferences on page 201) more details are displayed on this tile. Hovering over the title displays a tooltip listing the events that triggered the rebuild operation. Click More details... to open the Monitor view.</td>
</tr>
<tr>
<td>5 - Alert Indicators</td>
<td>Displays the number of active alerts in the system, using the system-wide color codes.</td>
</tr>
<tr>
<td>6 - SDCs</td>
<td>Displays the number of SDCs (clients) in the system. The large number in the center is the number of SDCs connected to the MDM. The defined number includes all SDCs defined in the system (some of which may be disconnected from the MDM).</td>
</tr>
<tr>
<td>7 - Volumes</td>
<td>Displays the number of volumes defined across the system, the free available capacity, and the used capacity. The amount of Free capacity shown on this tile is the maximum amount that can be used for creating a new volume. This amount takes into account how much raw data is needed for maintaining RAID 1 and system spares. Note that the number of volumes and the total capacity include snapshots.</td>
</tr>
<tr>
<td>8 - Protection Domains</td>
<td>Displays the number and status of all Protection Domains defined in the system. The large number in the center is the number of Protection Domains. This tile is displayed when the dashboard is filtering information according to cluster.</td>
</tr>
</tbody>
</table>
### Table 14 Dashboard tiles (continued)

<table>
<thead>
<tr>
<th>Tile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 - Storage Pools</td>
<td>Displays the number and status of all Storage Pools defined in the Protection Domain. The large number in the center is the number of Storage Pools. This tile is displayed when the dashboard is filtering information according to Protection Domain.</td>
</tr>
<tr>
<td>9 - SDSs</td>
<td>Displays the number and status of all SDSs (servers) in the system. The large number in the center is the number of SDSs defined in the MDM. This tile is displayed when the dashboard is filtering according to cluster or Protection Domain. If any SDSs are currently in Maintenance Mode, the orange maintenance icon is displayed on this tile. The specific SDSs currently in Maintenance Mode can be identified using the Backend and Alerts views.</td>
</tr>
<tr>
<td>9 - Devices</td>
<td>Displays the number and status of all storage devices defined in the Storage Pool. The large number in the center is the number of devices defined in the MDM. This tile is displayed when the dashboard is filtering according to Storage Pool.</td>
</tr>
<tr>
<td>10 - Management</td>
<td>Displays the status of the MDM cluster, or of an MDM operating in Single Mode (one node). The status is displayed graphically as a combination of the MDM cluster elements, and an alert icon if active alerts exist. For more information, see Management (MDM) cluster status on page 144. When you hover your mouse pointer over this tile, a tooltip displays the IP addresses, including the Virtual IP address, used by the MDM cluster or node.</td>
</tr>
<tr>
<td>11 - Local Clock</td>
<td>Displays the time on your local GUI client machine (not the MDM time)</td>
</tr>
</tbody>
</table>

### Management (MDM) cluster status

The graphics shown in the following tables represent various MDM states. A tooltip displays the IP addresses used by the MDM cluster or node.

- In 3-node cluster mode, a Master MDM, a Slave MDM, and a Tie Breaker MDM are configured in the system, and statuses are displayed on the Management tile of the dashboard.
- In 5-node cluster mode, a Master MDM, two Slave MDMs, and two Tie Breaker MDMs are configured in the system, and statuses are displayed on the Management tile of the dashboard.
- In single mode, one Master MDM is configured in the system, and the status of that MDM is displayed on the Management tile of the dashboard.

---

**Note**

It is not recommended to use Single Mode in production systems, except in temporary situations. The MDM contains all the metadata required for system operation. Single Mode has no protection, and exposes the system to a single point of failure. If the connection to the MDM is lost, the Dashboard is dimmed, and a dialog box is displayed.
The following figure shows how management nodes are displayed on the Dashboard.

Legend: 1—Tie Breaker, 2—Slave, 3—Master

The following tables show how management clusters are displayed on the Dashboard.

Table 15 Management node icons with normal operational status (green)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="5-node cluster" /></td>
<td>5-node cluster</td>
</tr>
<tr>
<td><img src="image" alt="3-node cluster" /></td>
<td>3-node cluster</td>
</tr>
<tr>
<td><img src="image" alt="single node" /></td>
<td>single node</td>
</tr>
</tbody>
</table>
Table 16 Management node status indications and color codes

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Green: Normal operation" /></td>
<td>Green—Normal operation</td>
</tr>
<tr>
<td><img src="image" alt="Gold: Degraded state" /></td>
<td>Gold—Degraded state: data is not consistent; system is synchronizing (the node is still operational)</td>
</tr>
<tr>
<td><img src="image" alt="Gray: Slave or Tie-Breaker down" /></td>
<td>Gray—Degraded state: a Slave or Tie-Breaker is down</td>
</tr>
<tr>
<td><img src="image" alt="Blue arrow: Upgrade in progress" /></td>
<td>Blue arrow—An upgrade is in progress</td>
</tr>
<tr>
<td><img src="image" alt="Red X: No communication with Master MDM" /></td>
<td>There is no communication with the Master MDM</td>
</tr>
</tbody>
</table>

Frontend views

The Frontend view provides detailed information about frontend objects in the system, including volumes, SDCs and snapshots, and lets you perform various configuration operations. The main areas of the Frontend view are:

- **Filter**—lets you filter the information displayed in the table and Property Sheets. For more information, see Filter (1) on page 151.
• **Toolbar buttons**—let you perform commands on the selected row in the table (add, remove, configuration), or toggle the display of Property Sheets, by clicking the appropriate button

• **Table**—displays detailed information about system objects. The table displays a wide range of information, which can be filtered. Certain commands can be performed on objects, using the context-sensitive menu for the desired row in the table, or the **Command menu** on the toolbar.

• **Property Sheets**—display very detailed read-only information about the object selected in the table. For more information, see **Property Sheets** on page 156. For more information about the terminology used in the Property Sheets, see the Glossary at the end of this publication.

**Volumes**

**Figure 20 Frontend > Volumes view**

1. **Filter toggle**—controls display of the filter

2. **Table view options**—each button provides a different combination of properties which can be displayed together in the table.

3. **Command menu**—contains a list of commands which you can perform on the row selected in the table

4. **Show Property Sheet**—controls display of the Property Sheet. The Property Sheet displays information about the object selected in the table.

5. **Duplicate Property Sheet**—Opens and floats the Property Sheet in a new window, which can be kept open while you display the **Table** properties of a different object, for comparison or other purposes

6. **Property Sheet**—The Property Sheets provide detailed read-only information about the object selected in the table
Adding Frontend objects to the filter

This topic explains how to add Frontend objects such as volumes, SDCs, snapshot trees and consistency groups to the Frontend filter. The filter simplifies the display in the main window, by showing only required objects, and hiding the rest.

Note

Toggle the filter display on and off by clicking the filter icon at the top left corner of the window. When the filter is on, only items added to the filter will be visible in the table.

To add objects to the filter, perform these steps:
Procedure

1. In the **Frontend** view, navigate to the objects that you want to add to the filter, and select them.

2. From the **Command menu** or context-sensitive menu, select one of the following, according to your needs:
   - **Add to Filter**
   - **Add Snapshot Tree to Filter** (adds all the snapshots for the selected volume)
   - **Add Consistency Group to Filter** (adds all the members of the consistency group)

**Backend view**

The **Backend** view provides detailed information about backend objects in the system, and lets you perform various configuration operations. The main areas of the Backend view are:

- **Filter**—lets you filter the information displayed in the table and Property Sheets. For more information, see Filter on page 151.
- **Toolbar buttons**—let you display various sets of information, perform commands on the selected row in the table (add, remove, configuration), or toggle the display of Property Sheets, by clicking the appropriate button
- **Table**—displays detailed information about system objects. The table displays a wide range of information, which can be filtered. Certain commands can be performed on objects, using the context-sensitive menu for the desired row in the table, or the Command menu on the toolbar.
- **Property Sheets**—display very detailed read-only information about the object selected in the table. For more information, see Property Sheets on page 156. For more information about the terminology used in the Property Sheets, see the Glossary at the end of this publication.

**Note**

Irrelevant, mostly zero values, are “dimmed” in the Backend view. The only exception (where a value could be greater than zero but is dimmed) is when the Max Capacity is the same as the Total Capacity. In this case, Max Capacity would be dimmed (if decreased capacity exists, Max = [Total + decreased] in the Backend table). Similarly, arrows and icons are unavailable in the same circumstances.

**Note**

Some objects in the system can be identified by ID numbers. The ID numbers displayed in the GUI can be used in CLI commands to specify these objects.
Figure 23 Backend view

1. **Filter toggle**—controls display of the filter

2. **Table view options**—each button provides a different combination of properties which can be displayed together in the table. Additional views are available from the **More Table Views** button. For more information, see Table on page 151.

3. **Command menu**—contains a list of commands which you can perform on the row selected in the table. For more information, see Command menu (3) on page 151.

4. **Storage Pools\SDS toggle**—toggles display of the table rows grouped according to either Storage Pools, or SDSs. Some table views are only available when sorted by either SDSs or Storage Pools. For example, Fault Sets are only displayed when

5. **Show Property Sheet**—controls display of the Property Sheet. The Property Sheet displays information about the object selected in the table.

6. **Duplicate Property Sheet**—Opens and floats the Property Sheet in a new window, which can be kept open while you display the properties of a different object, for comparison or other purposes.

7. **Table**—displays a summary of properties for the objects selected in the filter, according to the selected table view option.
Command menu (3)

The **Command menu** button displays a list of commands which you can perform on rows selected in the table. The contents of the **Command menu** differ, depending on the object selected in the table. Many of the commands can also be accessed from the context-sensitive menu when table rows are right-clicked.

Filter (1)

The filter lets you filter out the information shown in the table, so that only the objects related to the items selected in the filter are visible. Items colored dark blue in the filter are displayed. The buttons at the top of the filter panel control the items hidden, displayed, selected or cleared in the filter. Below these buttons, a search field lets you type free text to search for an object by name. The filter below shows a filter being used to show specific devices in the Backend table. In the Backend, you can filter information according to Storage Pools, SDSs, Volumes, Protection Domains and Devices.

Your filtering choice would depend on your current problem or management needs. You can also add a specific object to the filter, using the **Add to Filter** command from the **Command menu** or context-sensitive menu.

Figure 24 Backend filter

Table

The table displays object statuses, and allows configuration of some objects. The contents of a Property Sheet for a specific object are determined by the row selected in the table. The color codes described in **Color codes** on page 137 also apply to the items displayed in the table.
The information displayed in the table is controlled by the filter and the table view options. Selected objects (rows in the table) can be created, configured and removed using context-sensitive menu options, or commands from the **Command** menu. The columns in the table can be resized, by dragging the borders in the heading row of the table. The scrollbar at the bottom of the table lets you scroll through the columns in the table. The following table describes the available table views:

**Note**

Clock icons 🕒 in the cells indicate stale\aging data.

<table>
<thead>
<tr>
<th>Name of view</th>
<th>Contents of view</th>
<th>Suggested use, comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Total Capacity, Capacity In-Use, I/O Bandwidth, IOPS, Rebuild, Rebalance, Alerts</td>
<td>Provides a general overview the capacity and health of system objects. If you find that there are active alerts, you can switch to <strong>State Summary</strong> table view, or the <strong>Alerts</strong> view to see more details about the alerts. While this view is similar to the Dashboard, the main difference is that here, you can simultaneously monitor many objects within their hierarchy. You can then filter the table for specific objects or sets of objects, in contrast to the Dashboard, where you can only drill-down to objects. In addition, commands and Property Sheets are available to you from this view. <strong>Note</strong> The miniature Capacity ring shown here represents the outer Capacity ring on the Dashboard. For more information, see <strong>Dashboard tiles</strong> on page 141.</td>
</tr>
<tr>
<td>Capacity Usage</td>
<td>Total, In-Use, Usage, Thick Thin, Snapshot, Spare, Max Related Property Sheet section: <strong>Capacity</strong></td>
<td>Provides a breakdown of capacity usage per use type. You can use this to check whether more capacity needs to be added to your system, and where.</td>
</tr>
<tr>
<td>Capacity Health</td>
<td>Capacity In-Use, Protected, Degraded, Failed, Health, Rebuild, Rebalance Related Property Sheet sections: <strong>Capacity</strong>, <strong>Alerts</strong>, <strong>Rebuild/Rebalance</strong></td>
<td>Provides information about the health of the objects in the system, per object</td>
</tr>
<tr>
<td>Internal I/O</td>
<td>Health, Backward Rebuild, Forward Rebuild, Rebalance Related Property Sheet sections: <strong>Alerts</strong>, <strong>Rebuild/Rebalance</strong></td>
<td>Provides a summary of Rebuild and Rebalance health, status, and workload per object</td>
</tr>
<tr>
<td>Application I/O</td>
<td>Bandwidth, IOPS and I/O Size for: Total, Read, Write, 2nd Write Related Property Sheet section: <strong>Workload</strong></td>
<td>Provides workload information for applications reading/writing to storage in the system. 2nd Writes refer to the protection copy of data being written to storage.</td>
</tr>
</tbody>
</table>
Table 17 Table view options (continued)

<table>
<thead>
<tr>
<th>Name of view</th>
<th>Contents of view</th>
<th>Suggested use, comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall I/O</td>
<td>Bandwidth, IOPS and I/O Size for: Total, Total Read, Total Write</td>
<td>Provides workload information for all I/Os in the system, including both application I/Os, and I/Os for internal processes</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet section: <strong>Workload</strong></td>
<td></td>
</tr>
<tr>
<td>I/O Bandwidth</td>
<td>Read, Write, Backward Rebuild, Forward Rebuild, Rebalance, Total, Total Read, Total Write</td>
<td>Shows the bandwidth being used for various jobs in the system</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet section: <strong>Network Throttling</strong></td>
<td></td>
</tr>
<tr>
<td>State Summary</td>
<td>Summary</td>
<td>Can be used to identify items in the system which have open alert states, and to view the alert messages, including information statuses of various objects. If there are pending security certificates, and if an SDS is in Maintenance Mode, this is also indicated here. Alerts marked blue are for information purposes only, and do not require that any action be taken.</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet section: <strong>Alerts</strong></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>Total Capacity, SDSs, Devices, Storage Pools, Volumes, Free Capacity for Volume Allocation, Alerts</td>
<td>Provides an overview of the number of objects per type in your system, their capacity, and lets you determine the amount of free capacity available for creating an additional volume. The <strong>Free Capacity for Volume Allocation</strong> column is the only one that is not stated in Raw Capacity values. This table view is a convenient location from which to perform Add, Remove, Activate and Inactivate commands. For more information, see Configuring the System using the GUI on page 163. The <strong>Related Objects</strong> section of the Property Sheet helps you to identify related objects to the one selected in the table.</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet sections: <strong>Identity</strong>, <strong>Related Objects</strong></td>
<td></td>
</tr>
<tr>
<td>Device Latency</td>
<td>Average Read Latency, Average Write latency, Average Read Size, Average Write Size, Scanned Capacity, Resolved Errors, Data Conflicts</td>
<td>Provides an overview of performance information, and Background Device Scanner results, per device. When the table is sorted by SDSs, the Down arrow in each SDS row reveals all the devices in the SDS.</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet sections: <strong>Device Latency</strong>, <strong>Background Device Scanner</strong></td>
<td></td>
</tr>
<tr>
<td>Read RAM Cache</td>
<td>State, Size, Used, Hit Rate, Write Mode</td>
<td>Lets you check which SDSs have Read RAM Cache enabled, view associated counters, and check which Storage Pool is set to use the cache</td>
</tr>
<tr>
<td></td>
<td>Related Property Sheet section: <strong>Read RAM Cache</strong></td>
<td></td>
</tr>
<tr>
<td>Name of view</td>
<td>Contents of view</td>
<td>Suggested use, comments</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Read Flash Cache</td>
<td>State, Size, Used, Read Hit Rate, Total Errors, Alerts</td>
<td>Lets you check which SDSs and Storage Pools have Read Flash Cache enabled, view associated counters. The Related Objects section of the corresponding Property Sheet shows the names/paths of the devices used for caching.</td>
</tr>
<tr>
<td>Rebuild and Rebalance (Advanced)</td>
<td>Health, Backward Rebuild, Forward Rebuild, Rebalance</td>
<td>Shows workload and active rebuild and rebalance jobs, as well as pending jobs to be processed. Credited incoming and outgoing information is displayed for each process (Backward Rebuild, Forward Rebuild and Rebalance).</td>
</tr>
<tr>
<td>Planned Rebuilds (Advanced)</td>
<td>Degraded, Distribution, Backward and Forward Rebuilds</td>
<td>Shows amount of unprotected data, a visual breakdown of rebuild progress (Distribution), bandwidth, direction and status (Active/Pending) of jobs. You can monitor how the degraded capacity is planned to be rebuilt: How failed degraded capacity is expected to be rebuilt, then how the system will pool it for the rebuild processes (backward and forward,) and which of it is actively being rebuilt.</td>
</tr>
<tr>
<td>Planned Rebalancing (Advanced)</td>
<td>Protected, Distribution, Rebalance</td>
<td>Shows amount of protected data, a visual breakdown of rebalance progress (Distribution), bandwidth, direction and status (Active/Pending) of jobs. Advanced feature; modify with caution.</td>
</tr>
<tr>
<td>Rebuild I/O Priority (Advanced)</td>
<td>Policy, Concurrent I/O limit, Bandwidth Limit, Application Threshold, Quiet Period</td>
<td>Displays bandwidth settings currently configured for Rebuild jobs. These I/O Priority settings apply only to Storage Pools. These settings control system performance. Advanced feature; modify with caution.</td>
</tr>
<tr>
<td>Rebalance I/O Priority (Advanced)</td>
<td>Policy, Concurrent I/O limit, Bandwidth Limit, Application Threshold, Quiet Period</td>
<td>Displays I/O priority settings currently configured for Rebalance jobs. These I/O Priority settings apply only to Storage Pools. These settings control system performance. Advanced feature; modify with caution.</td>
</tr>
<tr>
<td>Network Throttling (Advanced)</td>
<td>Overall I/O Limit, Rebuild I/O Limit, Rebalance I/O Limit, Rebuild Incoming Limit, Rebalance Incoming Limit, Rebuild Queue Length,</td>
<td>Displays Network Throttling settings currently configured in the system. These settings control</td>
</tr>
</tbody>
</table>
Table 17 Table view options (continued)

<table>
<thead>
<tr>
<th>Name of view</th>
<th>Contents of view</th>
<th>Suggested use, comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Related Property Sheet section: <strong>Network Throttling</strong></td>
<td></td>
</tr>
<tr>
<td>Read RAM Cache (Internal)</td>
<td>For support purposes only. Visible only if Backend Internals are enabled in the <strong>User Preferences</strong> window.</td>
<td></td>
</tr>
</tbody>
</table>

**Alerts view**

The **Alerts** view provides a list of the alert messages currently active in the system, in table format. You can filter the table rows according to alert severity, and according to object types in the system. For a list of alerts generated by the system, see ScaleIO Alerts in SNMP, GUI, REST, and ESRS on page 277.

To view a Property Sheet for a specific alert, select the corresponding row in the table, and click the **Show Property Sheet** button. For more information about Property Sheets, see Property Sheets on page 156.

**Figure 25 Alerts view**

1 Severity filter—filters the table contents according to alert severity:

5 **Item Type**—MDM, Protection Domain, Storage Pool, SDS, Device, SDC
All alerts

Medium—alerts which are Medium or High severity

High—only alerts which are High severity

2 Item Types filter—filters the table contents according to:

All Item Types, MDM, Protection Domain, Storage Pool, SDS, Device, SDC

3 #—the line number in the Alerts table

4 Severity—the alert severity: High, Medium or Low

6 Name—the user-defined name of the item, if one has been defined

7 Alert—the alert message generated by the system

8 Alert indicators—summarize the total amount of each alert type (from left to right: High, Medium, Low)

Property Sheets

The Property Sheets provide detailed read-only information about the object selected in most Frontend tables, Backend tables, Monitor tables.

The contents of the Property Sheets differ, depending on the object selected in the table. Property sheets help you to monitor specific objects in the system by displaying the following, using the blue collapse and expand arrows next to each section of the Property Sheet:

- **General** and **Health** information about the object
- **Identity**—identifying information, such as an object’s ID number, name, IP addresses, port usage, VM usage, GUID
- **Mapped Volumes** for the selected SDC, including the volume name, and bandwidth limit and IOPS limit per volume
- **MDM Cluster** details, such as cluster mode and state, IP addresses and ports (including the Virtual IP address) used for management and MDM functions, and SSL version being used for secure communication. The Virtual IP addresses and the Virtual IP interfaces are displayed together in table format, to indicate the mapping between them.
- **Alerts**—alert status per selected object, including SDS Maintenance Mode (if active)
- **Capacity** usage per selected object
- **Workload** information (bandwidth usage and IOPS) per selected object
- **Rebuild/Rebalance** information about the selected object(s), for forward and backward rebuilds, rebalancing, data at rest, and job status (active\pending). The type of information displayed depends on the type of object selected in the table.
- **Device Latency** averages for Read and Write, and average I/O size, for the device selected in the table
If the background device scanner is enabled, several device read statistics are dramatically affected.

- **Read RAM Cache** configuration, state, and statistics for the selected object. The type of information displayed depends on the type of object selected in the table.
- **Read Flash Cache** configuration, state, and statistics for the selected object. The type of information displayed depends on the type of object selected in the table.
- **Device Test Results** for the device selected in the table, if any tests have been performed
- **Background Device Scanner** results for the device selected in the table, if the scanner is enabled
- **Network Throttling** configuration for the selected SDS, including bandwidth limit per job, and queue length, for both Rebuilding and Rebalancing.
- **I/O Priority** configured for the selected Storage Pool, including Rebuild and Rebalance states, number of parallel jobs, I/O prioritization policy, concurrent I/Os and bandwidth limit
- Miscellaneous items, such as DRL mode, zero padding, checksum mode
- **Performance** profile currently assigned to the selected object: Default, High or Custom. “Custom” is displayed whenever performance-related parameters have been configured manually, instead of via a performance profile.
- **Oscillating Failure Counters** are shown for SDSs and devices selected in the Backend view, for SDCs selected in the Frontend view, and for Alert messages.
- **Oscillating Failure Parameters** currently configured in the system are shown for the entire system, for the selected Storage Pool or Protection Domain, and for Alert messages. The counters shown depend on the object selected in the table.
  - **Window**: the sliding time-window for each interval (Short, Medium and Long)
  - **Threshold**: the number of errors that may occur before error reporting commences
  - **Period**: the time interval of each Window, in seconds
- **Maintenance Mode** state of the selected SDS is shown here. States include: No Maintenance and In Maintenance Mode.
- **Certificate Info** is shown for security certificates
- **Related objects**, which can be very useful for troubleshooting problems, or for planning purposes, when you need to make changes to your system.

You can view properties for multiple objects by using the **Duplicate Property Sheet** button, and then navigating to a different object’s row in the table. When more than one Property Sheet is open, a floating widget that controls them is displayed in the bottom part of the main window, as shown in the following figure.

You can open Property Sheets, duplicate them, and then simultaneously work on other unrelated objects in the system. The duplication feature is not supported in the Hardware view.
The following figure shows a typical Property Sheet for an SDS, with the Related Objects section of the Property Sheet expanded.
**Figure 27** Example of a Property Sheet for an SDS

![Property Sheet for an SDS](image)
CHAPTER 10

Monitoring the System using the GUI

The following topics explain how to monitor the system, using the GUI.

- Viewing object properties in Backend and Frontend views
- Viewing licensing information
- Verifying your connection to the Management cluster
Viewing object properties in Backend and Frontend views

Procedure

1. In Backend or Frontend view, use the filter to display one or more objects, and select the corresponding check boxes of the desired objects (optional).
2. Navigate to the desired object in the table.
3. Display the required information, using the table view options.
4. Select the required object’s row in the table, and then, on the expandable Property Sheet on the right side of the window, click the blue arrow buttons beside the headings to expand them and view specific status information.

Note

Contents of the Property Sheet are dynamic, and differ, depending on the row selected in the table. For more information about Property Sheets, see Property Sheets on page 156.

Viewing licensing information

Before a permanent license is installed, a banner is displayed at the top of the GUI window that provides links for purchasing a license, and for registering for ScaleIO newsletters.

Information required for licensing purposes is located in the About window, as described in the following steps:

Procedure

1. From the System Settings menu at the top right side of the window, in any view, select the About option.
   The About window is displayed.
2. Make a note of the information displayed for Installation ID, which is required for electronic licensing purposes.
   Additional information pertaining to your license is also displayed in this window.

Verifying your connection to the Management cluster

If your GUI connection to the system is operating normally, regular access to all the GUI views is possible.

The Management IP address to which you are connected is also displayed in the top left corner of the GUI. For more information about MDM statuses, see Management (MDM) cluster status on page 144.

If the connection is lost, the GUI is dimmed, and a dialog box is displayed.
CHAPTER 11

Configuring the System using the GUI

The following topics explain how to configure the system, using the GUI.

- Configuring capacity .......................................................... 164
- Configuring cache ................................................................. 171
- Configuring volumes, volume trees, SDCs, and snapshots ....... 176
- Entering and exiting SDS Instant Maintenance Mode ............... 188
- Configuring Oscillating Failure counters .............................. 189
- Applying Performance Profiles to system components ............. 194
- Configuring I/O priorities and bandwidth use (advanced) .......... 195
- Enabling and disabling Rebuild/Rebalance (advanced) ............... 197
- Using the background device scanner .................................. 197
- Modifying Checksum protection mode ................................. 199
- Renaming objects ................................................................. 200
- Approving pending security certificates ................................ 201
- Customizing system preferences ........................................ 201
Configuring capacity

Add, remove, and configure capacity.
The following topics explain how to add, remove, activate, and inactivate capacity, activate devices, clear device errors, and set device capacity limits.

Adding SDSs and storage devices

SDSs and storage devices can be added to a system one by one, or in bulk operations, using the Add SDS and Add Device commands. In addition, the Add SDS to Protection Domain window lets you add both SDSs, and corresponding devices, all from the same window. You can associate up to eight IP addresses to the SDS. By default, performance tests are performed on the added devices, and the results are saved in the system.

You can assign a name to the SDS, as well as to the devices. This name can assist in future object identification. This can be particularly helpful for SDS devices, as the name will remain constant, even if the path changes.

To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.

Before you begin, ensure that at least one suitable Storage Pool is defined in the required Protection Domain.

Note

Devices can be tested before going online. Various testing options are available the Advanced area of the window (default: Test and Activate).

Note

You cannot enable zero padding after adding the devices. For more information, see Storage Pools on page 33.

Procedure

1. In the Backend view:
   a. To add one or more SDSs, navigate to the required Protection Domain, and select its row in the table
   b. To add one or more storage devices to an existing SDS, navigate to the required SDS, and select its row in the table

2. From the Command menu or context-sensitive menu, select the desired Add option.
   An Add window is displayed.

3. Enter the relevant information in the fields. Object names must meet the following requirements:
   - Contains less than 32 characters
   - Contains only alphanumeric and punctuation characters
   - Is unique within the object type
a. Fields that contain orange explanation marks are mandatory.

b. You must add at least one device to the new SDS at this stage.

You can add more devices later.

c. If you add Read Flash Cache devices, ensure that caching policy is set to enabled in the corresponding Storage Pool and on the SDS.

For more information, see Setting Read Flash Cache policy at Storage Pool level on page 171 and Setting Read Flash Cache policy at SDS level on page 172.

---

Note

If you want to add an SDS without any devices, you can do so using the CLI. To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.

---

d. The Advanced option provides additional items, such as device testing and RAM Read Cache configuration.

Click its Expand button to display additional fields, and configure them (recommended for advanced users only).

e. For some object types, a button is displayed.

Click it to add more objects or rows of the same type.

4. Click OK.

The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.

5. Click Close.

If you chose the Test only option in step 3, activate the devices as described in Activating devices on page 170.
**Figure 28 Add SDS window**

1. Add another SDS
2. Add another SDS by duplicating the values in the right panel of the window
3. Remove the selected SDS from the window
4. List of SDSs that will be added to the Protection Domain
5. SDS properties
6. Storage devices and their properties
7. Read Flash Cache devices and their properties
8. Add object/row
9. Remove object/row
Removing SDSs and devices

The removal of some objects in the system can take a long time, because removal may require data to be moved to other storage devices in the system. If you plan to replace a device with a device containing less storage capacity, you can configure the device to a smaller capacity than its actual capacity, in preparation for replacement. This will reduce rebuild and rebalance operations in the system later on. For more information, see Setting device capacity limits on page 170.

The system has job queues for operations that take a long time to execute. You can view the jobs in the Planned Rebuilds and Planned Rebalancing table views. Operations that are waiting in the job queue are shown as Pending. If a job in the queue will take a long time, and you do not want to wait, you can cancel the operation using the Abort button in the Remove command window (if you left it open), or using the Abort command from the Command menu.

The Remove command deletes the specified objects from the system. Use the Remove command with caution.

Procedure

1. In the Backend > Storage view, navigate to the desired object in the table, and select its row.
2. Right-click the row and select the desired Remove command.
   In the confirmation window, click OK. The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation. For some objects, an Abort button is available in the window, which can be used if you decide to abort the operation. There is also an Abort command accessible from the Command menu.
Adding, removing, and activating and inactivating capacity

Extra storage capacity can be added to your ScaleIO system by adding SDSs and/or their storage devices. You can either add them to existing Protection Domains and Storage Pools, or create new ones.

The Dashboard Capacity tile, some Backend table views (such as Capacity Usage, Configuration), and Property Sheets help you to better understand the amount of raw capacity and net free capacity currently available in the system.

Adding, removing, activating, and inactivating Protection Domains

This section describes how to add, remove, activate, and inactivate Protection Domains. Inactivating a Protection Domain does not remove it from the system, but it makes all data stored in that Protection Domain inaccessible to the system.

The inactivation feature is a much more effective way to shut down nodes, and is preferable to shutting them down manually.

When this feature is in effect, the following activities can take place, behind the scenes:

- Determine if there are any current rebuild/rebalance activities taking place. If so, the shutdown will be delayed (unless it is forced) until they are finished.
- Block future rebuild/rebalance activities.
- Quiesce (temporarily disable) application I/O and disable access to volumes.
- Move the DRL mode of all SDSs to harden, in preparation for restarting the server.
- Reload of all SDSs before re-enabling data access.

For each of the following procedures, after you click OK, the progress and result of the operation is displayed at the bottom of the window.

Procedure

1. To add a Protection Domain, perform these steps: In the Backend > Storage view, select the System row.
   
a. Right-click the row and select Add Protection Domain.

   The Add Protection Domain window is displayed.

   b. Type a name in the Name box, and click OK.

   When the operation is complete, the Protection Domain is active. You can now add SDSs, Fault Sets, Storage Pools, and Acceleration Pools to the Protection Domain. Before you add devices, ensure that at least one suitable Storage Pool is defined in the Protection Domain.

2. To remove Protection Domains, perform these steps:
   
a. In the Backend > Storage view, navigate to, and select one or more Protection Domains.
b. Verify that you have removed all child nodes from the Protection Domain.
c. Right-click the Protection Domain and select Remove.
d. Click OK.
e. If a confirmation window appears, confirm the operation, and type your password if requested to do so.

3. To inactivate Protection Domains, perform these steps:
   a. In the Backend > Storage view, navigate to, and select one or more Protection Domains.
   b. Right-click the Protection Domain and select Inactivate Protection Domain.
      The Inactivate Protection Domain window is displayed.
   c. Click OK.
      If a confirmation window appears, confirm the operation, and type your password if requested to do so.

4. To activate Protection Domains, perform these steps:
   a. In the Backend > Storage view, navigate to, and select one or more Protection Domains.
   b. Right-click the Protection Domain and select Activate Protection Domain.
      The Activate Protection Domain window is displayed.
   c. Click OK.

Adding Fault Sets

Fault Sets provide additional safeguards for protecting your data against hardware failure. Fault Sets are subsets of a given Protection Domain.

**Note**

When defining Fault Sets, you must follow the guidelines described in Fault Sets on page 35. Failure to do so may prevent creation of volumes.

**Procedure**

1. In the Backend > Storage view, navigate to, and select the Protection Domain.
2. Right-click the Protection Domain and select Add Fault Set.
3. Type a name in the Fault Set Name box, and click OK.
   The Fault Set will now be visible in the Related Objects section of the Protection Domain’s Property Sheet.

**Note**

Use the CLI to remove Fault Sets.

Adding Storage Pools

A Storage Pool is a group of devices within a Protection Domain. Create Storage Pools before you start adding devices to the system. Each time that you add devices to the system, you must map them to either Storage Pools or Acceleration Pools.
Note
You cannot enable zero padding after adding the devices. For more information, see Storage Pools on page 33.

Procedure
1. In the Backend > Storage view, select the desired Protection Domain.
2. Right-click the Protection Domain and select Add Storage Pool.
   The Add Storage Pool window is displayed.
3. Type a name in the Name box.
4. Select a media type.
   All devices added to this Storage Pool must be this type of device.
5. Select an external acceleration type.
6. If you want to use Read RAM Cache, select the corresponding checkbox and the desired Write Handling Mode.

   Note
   The Read RAM Cache features are advanced features, and it is usually recommended to accept the default values. You can configure these features later, if necessary, using the Configure Read RAM Cache command. For more information about Read RAM Cache features, see Managing read RAM cache on page 111.

7. Click OK.

Activating devices

Use the Activate Device command in the following situations:

- Storage devices were added to the system using the Test only option for Device Tests, and successfully passed the tests.
- Storage devices were inactivated, and you want to bring them back online.

Procedure
1. In the Backend > Storage view, navigate to the device or devices in the table, and select the corresponding rows.
2. Right-click and select Activate Device.

Clearing device errors

Procedure
1. In the Backend > Storage view, navigate to the device in the table, and select its row.
2. Right-click the row and select Clear Device Errors.

Setting device capacity limits

In circumstances where you need to replace a storage device in your system with a storage device of a smaller capacity, you should first set the capacity limit of the
device to be removed to less than its full capacity. In such a case, capacity will be decreased, but the size of the disk remains unchanged. The capacity assigned to the storage device must be smaller than its actual physical size.

**Note**
Decreased capacity is shown on the Dashboard, using pale gray, on the outer ring on the Capacity tile.

**Procedure**
1. In the Backend > Storage view, navigate to the device in the table, and select its row.
2. Right-click the row and select Set Device Capacity Limit.
3. Type the desired value and click OK.

**Configuring cache**

Configure the system's caching features to optimize system performance.

The following procedures explain how to configure the system's caching features:

- Setting Read Flash Cache policy at Storage Pool level on page 171
- Setting Read Flash Cache policy at SDS level on page 172
- Adding Read Flash Cache devices on page 172
- Removing Read Flash Cache devices on page 174
- Changing Read RAM Cache volume settings on page 173
- Configuring Read RAM Cache (advanced, Backend) on page 174

**Setting Read Flash Cache policy at Storage Pool level**

This topic describes how to enable and disable Read Flash Cache policy at Storage Pool level.

- Once this is enabled at Storage Pool level, set the Read Flash Cache policy at SDS level.
- Once Read Flash Cache is enabled at both Storage Pool and SDS levels, add Read Flash Cache devices to the SDS in order to commence caching.

To set Read Flash Cache policy at Storage Pool level, perform these steps:

**Procedure**
1. In the Backend view, navigate to the required Storage Pool, and display the Read Flash Cache table view.
   The State column indicates whether the Read Flash Cache feature is in use in the Storage Pool.
2. From the Backend view, right-click the Storage Pool, and choose Set Flash Cache Policy.

3. In the Set Flash Cache Policy window, do one of the following:
   a. To enable caching, ensure that the Enable Read Flash Cache check box is selected, and click OK.
   b. To disable caching, clear the Enable Read Flash Cache check box, and click OK.

4. When the status shows that the operation was successful, click Close.

**Setting Read Flash Cache policy at SDS level**

This topic describes how to enable and disable Read Flash Cache policy on an SDS.

- To enable caching, ensure that the policy is also enabled at Storage Pool level.
- Once Read Flash Cache is enabled at both Storage Pool and SDS levels, add Read Flash Cache devices to the SDS in order to commence caching.

To set Read Flash Cache policy on an SDS, perform these steps:

**Procedure**

1. In the Backend view, navigate to the required SDS, and display the Read Flash Cache table view.
   
   The State column indicates whether the Read Flash Cache feature is in use on the SDS:

   ![Read Flash Cache table view](image)

2. From the Backend view, right-click the SDS, and choose Set Flash Cache Policy.

3. In the Set Flash Cache Policy window, do one of the following:
   a. To enable caching, ensure that the Enable Read Flash Cache checkbox is selected, and click OK.
   b. To disable caching, clear the Enable Read Flash Cache checkbox, and click OK.

4. When the status shows that the operation was successful, click Close.

**Adding Read Flash Cache devices**

Up to eight caching devices can be used per SDS. Ensure that Read Flash Cache policy is set to enabled on the corresponding Storage Pool and SDS.
Note
The RFcache driver must be installed before you can add a Read Flash Cache device to an SDS. (Typically, the driver is installed during deployment, and devices are designated for caching.)

To add a Read Flash Cache device to the system, perform these steps:

Procedure
1. From the Backend view, navigate to the corresponding SDS, right-click it and choose Add Read Flash Cache Device.
2. In the Add Read Flash Cache Device to SDS window, type the path to the required device in the Path box, and a name in the Name box (optional).
   a. If you want to add multiple cache devices, click Add Device and repeat this step.
3. Click OK.
4. When the status shows that the operation was successful, click Close.
5. In some cases, a rebuild/rebalance begins.
   Use the Dashboard view to determine when that is complete. The cache device has been added to the ScaleIO system.

Note
Devices used for caching are not shown in the Backend tables. You can identify them in the Related Objects section of an SDS's Property Sheet.

Changing Read RAM Cache volume settings
By default, Read RAM Cache is disabled on volumes. To change Read RAM Cache settings on volumes, perform these steps:

Procedure
1. In Frontend > Volumes, select the Volumes or Volumes Monitor view.
2. Navigate to the volumes, and select them.
3. Right-click the volumes and select Set Volume Read RAM Cache.
   The Set Volume Use Read RAM Cache window is displayed, showing a list of the volumes that will be modified.
4. Select or clear the Use Read RAM Cache check box as follows:
   - To disable Read RAM Cache on the volumes, clear the check box.
   - To enable Read RAM Cache on the volumes, select the check box.
5. Click OK.
   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
Removing Read Flash Cache devices

This topic describes how to remove an SSD device or a PCIe flash disk that is being used to provide caching.

To remove a Read Flash Cache device from the system, perform these steps:

Procedure

1. From the Backend view, right-click the Storage Pool of which the disk is a member, and choose Set Flash Cache Policy.
2. In the Set Flash Cache Policy window, clear the Enable Read Flash Cache check box, and click OK.
3. When the status shows that the operation was successful, click Close.
4. From the Backend view, navigate to the corresponding SDS, right-click it and choose Remove Read Flash Cache Device.
5. In the Remove Read Flash Cache Device window, click OK.
6. When the status shows that the operation was successful, click Close.
7. In some cases, a rebuild/rebalance begins.

Use the Dashboard view to determine when that is complete. The device is removed from the ScaleIO system. You may now either remove the physical drive from the system, or add it to the SDS as a storage device. If you have other cache devices installed in the SDS, set the Read Flash Cache policy back to Enabled.

Configuring Read RAM Cache (advanced, Backend)

The RAM Read Cache feature improves your system’s application performance for storage-related activities. By default, caching is disabled.

To use RAM Read Cache, you need to configure RAM Read Cache settings at two levels:

- Storage Pool—controls RAM Read Cache for all the SDSs in the selected Storage Pool. Caching can be enabled or disabled, and either Cached (default) or Passthrough Write Handling modes can be selected. When RAM Read Cache is enabled in a Storage Pool, the feature is enabled at Storage Pool level. However, caching must also be set to Enabled in each SDS in the Storage Pool. Caching will only begin once devices have been added to the SDSs. It is possible to enable RAM
caching for a Storage Pool and then disable caching on one or more SDSs individually.

- Per SDS—controls RAM Read Cache for one or more SDSs. Caching can be enabled or disabled for the specified SDS, and the capacity allocated for caching on an SDS can be specified. Caching will only begin after one or more devices are added to the SDSs. Ensure that the feature is also enabled at Storage Pool level.

Note

By default, RAM read cache is disabled in all volumes. You can change this setting using the CLI. For more information, see the ScaleIO CLI Reference Guide.

To configure caching, perform these steps:

Procedure

1. In the Backend view, navigate to, and select the desired Storage Pools.
2. From the Command menu or context-sensitive menu, select **Configure RAM Read Cache**.
   
   The **Configure RAM Read Cache** window is displayed. The right pane of the window lists the Storage Pools that you are configuring.
3. Select or clear the options that you require (selected=used; clear=not used), and click **OK**.

4. To enable/disable/configure cache size for SDSs, in the Backend view, navigate to, and select the desired SDS(s).
5. From the Command menu or context-sensitive menu, select **Configure RAM Read Cache**.
   
   The **Configure RAM Read Cache** window is displayed. The right pane of the window lists the SDSs that you are configuring.
6. Select or clear the option that you require (selected=enable; clear=disable).
7. If necessary, edit the value in the **RAM Read Cache Size** box (default=128 MB).
8. Click **OK**.
Configuring volumes, volume trees, SDCs, and snapshots

This section contains procedures for adding, removing, and managing volumes and snapshots. It explains how to remove volumes, create snapshots, and set volume bandwidth and IOPS limits. It also describes setting the SDC restriction mode and how to approve SDCs before mapping volumes.

Adding volumes

Add volumes to a system.

**Before you begin**

There must be at least three SDS nodes in the system and there must be sufficient capacity available.

---

**Note**

For the minimum size of an SDS, see System requirements on page 20.

The adding and mapping volume process is necessary, as part of the getting started process, before applications can access the volumes. In addition, you may create additional volumes and map them as part of the maintenance of the virtualization layer.

You can configure the caching option when creating the volumes, or you can change the Read RAM Caching feature later. If you want to enable the caching feature, ensure that the feature is also enabled in the backend of the system, for the corresponding Storage Pool and SDSs. For more information, see Changing Read RAM Cache volume settings on page 173.

Define volume names according to the following rules:

- Contains less than 32 characters
- Contains only alphanumeric and punctuation characters
- Is unique within the object type

ScaleIO objects are assigned a unique ID that can be used to identify the object in CLI commands. You can retrieve the ID via a query, or via the object’s property sheet in the GUI. It is highly recommended to give each volume a meaningful name associated with its operational role.

To add one or multiple volumes, perform these steps:
Procedure

1. In any of the Frontend > Volumes views, navigate to the Storage Pool to which you want to add the volume, and select it.

2. From the Command menu or context-sensitive menu, select Add Volume.

3. In the Add Volume window, if you want to create more than one volume, select Create multiple volumes and type the number of volumes you would like to add in theCopies box.
   - If you type 1, only one volume will be created (optional—can be left blank).
   - If you type a number greater than 1, the characters %i% will be added to the Name box, and multiple volumes will be created, accordingly. The volumes will be named and numbered automatically, starting from 1. If you want the numbering to start from a different number, type it in the Start numbering at box, as described in Step 5. The remaining options in the window will be assigned to all the volumes created in this operation.

4. Type a name for the volume:
   - If you are adding one volume, enter the name in the Name box.
   - If you are adding multiple volumes, enter the base name in the Base name box. The volumes will all be created with the same name, and a number will be appended instead of the characters %i%. These characters can be positioned anywhere in the name. The names that will be created are displayed in the right pane of the window, as shown in the figure later in this topic.

5. If you want the numbering to start from a specific number other than 1, type it in the Start numbering at box.
   This number will be the first number in the series that will be appended to the volume name. For example, if the Name is Vol%i% and the Start numbering at value is 100, the name of the first volume created will be Vol100, and the second volume will be Vol101, and so on.

6. Type a number in the Size box, representing the volume size in GB (basic allocation granularity is 8 GB).

7. Select either Thick (default) or Thin provisioning options.

8. If you want to enable the RMcache feature (disabled by default), select Use RMcache.

9. Click OK.
   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
After you finish

To use the created volume, you must map it to (at least) one SDC. If the restricted SDC mode is enabled for the system, you must approve SDCs prior to mapping volumes to them. For more information on approving SDCs, see Approve SDCs (GUI) on page 179. For more information on mapping volumes, see Mapping a volume to an SDC on page 90.

Restricted SDC mode

Enabling restricted SDC mode gives you more control over your ScaleIO system.

Restricted SDC mode is set at the system level. When enabled, you must approve SDCs prior to mapping volumes to them. The restricted SDC setting has the following modes:

- No restriction — Volumes can be mapped without pre-approving SDCs.
- GUID restriction — SDCs are approved using their GUID. Only once the SDC is approved can it be used for mapping volumes.
- Approved IP restriction — SDCs must be approved using their GUID and IP address. Only once the SDC is approved using both GUID and IP address can it be used for mapping volumes.

You can set the restricted SDC mode using the GUI, CLI, or REST API.

Note

In a system that has been upgraded and already has volumes mapped to SDCs, if you want to enable restricted SDC mode, you must first approve the SDCs and only then enable restricted SDC mode.
Set the system's restricted SDC mode (GUI)

Use the ScaleIO GUI to set the restricted SDC mode.

The system's restricted SDC mode can also be set using the CLI or the REST API. For details, see the CLI Reference Guide or the REST API Reference Guide.

Note

In a system that has been upgraded and already has volumes mapped to SDCs, if you want to enable restricted SDC mode, you must first approve the SDCs and only then enable restricted SDC mode.

Procedure

1. In the Frontend > SDCs view, right-click on the System and select Set Restricted SDC Mode.
2. In the Set Restricted SDC Mode dialog box, select one of the following options and click OK.
   - No restriction
   - GUID restriction
   - Approved IP restriction

Results

The restricted SDC mode is set for the system. If you enabled restricted SDC mode by selecting either GUID restriction or Approved IP restriction, you must configure approved SDCs before you can map volumes.

Approve SDCs (GUI)

When the system's restricted SDC mode is set to GUID restriction, you must approve SDCs before you can map volumes.

Procedure

1. In the Frontend > SDCs view, right-click on one or several SDCs that you want to approve and select Approve SDC.
2. In the Approve SDC window, verify that the SDCs listed are the ones you want to approve and click OK.

Results

The SDCs are approved and you can map volumes. The Approved IPs column in the Frontend > SDCs displays which SDCs are approved.

Configure approved SDC IP addresses (GUI)

When the system's restricted SDC mode is set to approved IP restriction, you must configure SDC IP addresses before you can map volumes.

Before you begin

Ensure that the SDCs have been approved by GUID.

Procedure

1. In the Frontend > SDCs view, right-click on the SDCs that you want to approve and select Configure Approved IP Addresses.
2. In the Configure Approved IP Addresses window, add the IP addresses of the SDCs you want to approve.
You can click the Add IP Address button to add up to a total of four IP addresses.

3. Click OK and then click Close.

Results
The SDC IP addresses are approved and you can map volumes. The Approved IPs column in the Frontend > SDCs view displays which SDC are approved.

Mapping and unmapping volumes
This topic describes how to map and unmap one or more volumes to/from SDCs. Mapping exposes the volume to the specified SDC, effectively creating a block device on the SDC.

For Linux devices, the scini device name can change on reboot. It is recommended to mount a mapped volume to the ScaleIO unique ID, a persistent device name, rather than to the scini device name.

To identify the unique ID, run the `ls -l /dev/disk/by-id/` command. For more information, see Associating ScaleIO volumes with physical disks on page 224. You can also identify the unique ID using VMware. In the VMware management interface, device is called EMC Fibre Channel Disk, followed by an ID number starting with the prefix eui.

To map volumes, perform these steps:

**Procedure**

1. In the Frontend > Volumes view, navigate to the volumes, and select them.
2. From the Command menu or context-sensitive menu, select Map Volumes.
   
   The Map Volumes window is displayed, showing a list of the volumes that will be mapped.
3. In the Select Nodes panel, select one or more SDCs to which you want to map the volumes.
   
   • You can use the search box to find SDCs.
   
   • If you select an SDC that is already mapped to the volume, a green icon will appear in the mapping matrix on the right side of the window.
4. Click Map Volumes.
   
   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
To unmap volumes, perform these steps:

5. In the **Frontend > Volumes** view, navigate to the volumes, and select them.
6. From the **Command menu** or context-sensitive menu, select **Unmap Volumes**.
   
   The **Unmap Volumes** window is displayed, showing a list of the volumes that will be unmapped.

7. If you want to exclude some SDCs from the unmap operation, in the **Select Nodes** panel, select one or more SDCs for which you want to retain mapping.
   
   You can use the search box to find SDCs.

8. Click **Unmap Volumes**.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.

---

**Removing volumes**

Before removing a volume from a system, you must ensure that it is not mapped to any SDCs. If it is, unmap it before removing it. For information, see Mapping and unmapping volumes on page 180.
If you want to remove a volume’s related snapshots as well, or just the snapshots, see Removing snapshots on page 183. Before removing snapshots, you must unmap all of them before removing them, in the same way that you unmap volumes.

Best practice is to avoid deleting volumes or snapshots while the MDM cluster is being upgraded, to avoid causing a Data Unavailability status.

Note

Removal of a volume erases all the data on the corresponding volume.

To remove one or multiple volumes, perform these steps:

Procedure

1. In the Frontend > Volumes view, navigate to the volumes, and select them.
2. From the Command menu or context-sensitive menu, select Remove.
   
   The Remove Volumes window is displayed, showing a list of the volumes that will be removed.
3. Click OK.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.

Figure 36 Remove Volumes window

Creating volume snapshots

This topic describes how to take a snapshot of one or more volumes.

When specifying more than one volume (a list), a consistency group is generated by default, and can be viewed in the snapshot’s property sheet. The snapshots under the
consistency group are taken simultaneously for all listed volumes, thus ensuring their consistency.

You can accept the default name, or define snapshot names according to the following rules:

- Contains less than 32 characters
- Contains only alphanumeric and punctuation characters
- Is unique within the object type

ScaleIO objects are assigned a unique ID that can be used to identify the object in CLI commands. You can retrieve the ID via a query, or via the object’s property sheet in the GUI.

Note

The consistency group is for convenience purposes ONLY. There are no protection measures to conserve the consistency group. You can delete members from it.

To take a snapshot, perform these steps:

Procedure

1. In the Frontend > Volumes view, navigate to the volumes, and select them.
2. From the Command menu or context-sensitive menu, select Snapshot Volume.

   The Snapshot Volume window is displayed, showing the volumes for which snapshots will be created.
3. In the Index box, type the number that you want to append to the snapshot names.
4. If you want the snapshots to belong to a consistency group, ensure that the Create Consistency Group check box is selected.
5. Click OK.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.

Figure 37 Snapshot Volume window

Removing snapshots

This topic explains how to remove a volume together with its snapshots, or remove snapshots only. Before removing a volume or snapshots, you must ensure that they are not mapped to any SDCs. If they are, unmap them before removing them.
Snapshots are unmapped in the same way as volumes are unmapped. For information, see Mapping and unmapping volumes on page 180.

Best practice is to avoid deleting volumes or snapshots while the MDM cluster is being upgraded, to avoid causing a Data Unavailability status.

---

**Note**

Removal of a volume or snapshot erases all the data on the corresponding volume or snapshot.

---

To remove snapshots, perform these steps:

**Procedure**

1. In the **Frontend > Snapshots** view, navigate to the volume from which you want to remove snapshots, and select it.

2. From the **Command menu** or context-sensitive menu, select one of the following options, depending on your needs:

   a. To retain the parent volume, and remove only its snapshots, select **Remove Descendants Only**

   b. To remove both the parent volume and all volumes that were created as snapshots of the specified volume or one of its descendants, select **Remove with Descendants**

   The **Remove Volumes** window is displayed, showing a list of the objects that will be removed.

3. Click **OK**.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
Removing snapshots from a consistency group

To remove a snapshot from a consistency group, perform these steps:

Procedure

1. In the **Frontend > Snapshots** view, navigate to the snapshot which you want to remove from the consistency group, and select the snapshot.

2. From the **Command menu** or context-sensitive menu, select **Remove Consistency Group**.

   The **Remove Consistency Group** window is displayed, showing the selected snapshot.

3. Click **OK**.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
Increasing a volume's size

This topic describes how to increase the size of one or more volumes in the system. You can increase (but not decrease) a volume capacity at any time, as long as there is enough capacity for the volume size to grow.

To increase the size of the specified volumes, perform these steps:

**Procedure**

1. In the **Frontend > Volumes** view, navigate to the volumes, and select them.
2. From the **Command menu** or context-sensitive menu, select **Increase Volumes’ Size**.

   The **Increase Volumes’ Size** window is displayed, showing a list of the volumes that will be modified.

3. In the **New Size** box, type a number representing the new volume size in GB (basic allocation granularity is 8 GB).
4. Click **OK**.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
Setting volume bandwidth and IOPS limits

This topic describes how to set bandwidth and IOPS limits for volumes. The limits will be applied on a per SDC basis. This enables you to control the quality of service (QoS). Ensure that the volumes are mapped before you set these limits.

To set limits on volumes, perform these steps:

Procedure

1. In the Frontend > Volumes view, navigate to the volumes, and select them.

2. From the Command menu or context-sensitive menu, select Set Volume Limits.

   The Set Volume Limits window is displayed, showing a list of the volumes that will be modified.

3. In the Bandwidth Limits and IOPS Limits boxes, type the required values, or select the corresponding Unlimited check box.
   - The number of IOPS must be larger than 10.
   - The volume network bandwidth is in MB/sec.

4. In the Select Nodes panel, select the SDCs to which you want to apply the changes.

5. Click Set Limits.

   The progress of the operation is displayed at the bottom of the window. It is recommended to keep the window open until the operation is completed, and until you can see the result of the operation.
Entering and exiting SDS Instant Maintenance Mode

This topic explains how to put an SDS into Maintenance Mode, in order to perform non-disruptive maintenance on the SDS, and how to cancel Maintenance Mode when you are finished. Instant Maintenance Mode lets you restart a server that hosts an SDS, without initiating data migration or exposing the system to the danger of having only a single copy of data. The system displays the SDSs that are in Maintenance Mode at any given time (but does not provide the total number of SDSs).

While SDSs are in Maintenance Mode, you should avoid both unnecessary rebuilds and operations that require taking SDS offline temporarily. It is recommended to use Maintenance Mode when there is relatively low system activity, as the time it takes for an SDS to exit Maintenance Mode depends on the amount of data that needs to be synchronized back into the server.

Note

Functional operations, such as configuration, cannot be performed on an SDS while it is in Maintenance Mode. If an active full copy is lost, its data will be unavailable until the SDS is brought back into the system, but that data will not be lost; it will be rebuilt using the temporary copy.

Procedure

1. To put an SDS into Maintenance Mode, perform these steps:
   a. In the Backend > Storage view, navigate to, and select the desired SDS.
   b. From the Command menu or context-sensitive menu, select Enter Maintenance Mode.
      The Enter Maintenance Mode window is displayed.
   c. If you want to force entry into Maintenance Mode even though there is insufficient space or degraded/failed capacity, select the corresponding check box:
      - Force Insufficient Space—allow entry into maintenance mode, even without enough available capacity
      - Force Degraded or Failed—allow entry into maintenance mode, even with degraded or failed data
d. Click OK.

The status area at the bottom of the window indicates when the operation is complete. Once the SDS is in Maintenance Mode, this will be indicated both on the Dashboard, and in Backend tables and Property Sheets, using the symbol, and the Maintenance Mode color code (green).

2. To put an SDS back into regular service (cancel Maintenance Mode), perform these steps:
   a. In the **Backend > Storage** view, navigate to, and select the desired SDS.
   b. From the **Command menu** or context-sensitive menu, select **Exit Maintenance Mode**.

   The **Exit Maintenance Mode** window is displayed.
   c. If you want to force exit from Maintenance Mode even though there is a failed SDS, select the **Force Failed SDS** check box.
   d. Click OK.

   The status area at the bottom of the window indicates when the operation is complete. Once the operation has been successfully completed, the SDS returns to normal operation, and data deltas collected on other SDSs during the maintenance period are copied back to the SDS.

### Configuring Oscillating Failure counters

Oscillating failure handling provides the ability to handle error situations, and to reduce their impact on normal system operation. This feature detects and reports various oscillating failures, in cases when components fail repeatedly and cause unnecessary failovers. You can configure the time interval associated with each window type, and the number of failures allowed before reporting commences for each window type, per counter.

You can reset specified oscillating failure counters to zero. This can be useful when you have fixed a problem and want to ensure that an alert is no longer active in the system.

### Configuring Oscillating Failure counter parameters

Configure Oscillating Failure counter parameters for the entire system, or for specific Protection Domains or Storage Pools.

#### Procedure

1. Perform one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>To configure counter parameters for all SDCs, Protection Domains or Storage Pools in the system:</td>
<td>In the <strong>Backend &gt; Storage</strong> view, select the <strong>System</strong> icon.</td>
</tr>
<tr>
<td>To configure counter parameters for a specific Protection Domain or Storage Pool:</td>
<td>In the <strong>Backend &gt; Storage</strong> view, navigate to, and select the desired Protection Domain or Storage Pool.</td>
</tr>
</tbody>
</table>
2. From the Command menu or context-sensitive menu, select Set Oscillating Failure Properties.

3. Perform one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>For system level:</td>
<td>In the For All box, select an option: SDCs, Protection Domains, or Storage Pools.</td>
</tr>
<tr>
<td>For a Protection Domain or a Storage Pool:</td>
<td>Go to the next step.</td>
</tr>
</tbody>
</table>

4. In the Counter Type box, select a counter. Options vary, depending on the item selected in the previous step.

5. In the Window Type box, select an option for the sliding window interval: Short, Medium or Long.

6. Perform one of the following:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you want to remove the selected counter definition from the system:</td>
<td>Select the Remove the counter check box.</td>
</tr>
</tbody>
</table>
| If you want to modify the threshold for the selected counter definition: | Enter a number in the fields for:  
  - failures (the maximum number of failures per time interval before reporting begins)  
  - seconds (the number of seconds per time interval) |

7. Click OK.

The currently configured counter parameters are displayed in the corresponding Property Sheet, in the Oscillating Failure Parameters section.
Figure 43 Configure Oscillating Failure counters—System

Figure 44 Configure Oscillating Failure counters—Protection Domain or Storage Pool
Resetting Oscillating Failure counters

You can reset specified oscillating failure counters to zero. This can be useful when you have fixed a problem and want to ensure that an alert is no longer active in the system. You can reset counters for the entire system, per Protection Domain, or per Storage Pool.

- To reset oscillating failure counters for all SDCs, Protection Domains or Storage Pools in the system, go to step 1.
- To reset counters for a specific Protection Domain or Storage Pool, go to step 6 on page 192.

Procedure

1. In the Backend > Storage view, select the System icon.
2. Right-click and select Reset Oscillating Failure Counters.
3. In the For All box, select an option.
   - If you want to reset counters for all object types, select Objects.
4. Perform one of the following:
   - For a specific counter, in the Counter Type box, select the required counter.
   - For all counters, in the Counter Type box, select None, and select the Reset All Counters check box.
5. Click OK.

Figure 45 Reset Oscillating Failure counters—System

To reset counters for a specific Protection Domain or Storage Pool, perform the following steps:

6. In the Backend > Storage view, navigate to, and select the desired Protection Domain or Storage Pool.
7. Right-click and select Reset Oscillating Failure Counters.
8. Perform one of the following:
   - For a specific counter, in the Counter Type box, select the required counter.
For all counters, select the **Reset All Counters** check box.

9. Click **OK**.

**Figure 46** Configure Oscillating Failure counters—Protection Domain or Storage Pool

### Viewing Oscillating Failure counters

You can view Oscillating Failure counters for network related issues, for SDCs, for SDSs and for devices in the following ways:

- **Network:**
  1. In the **Backend** view, select the **System** icon.
  2. From the **Command menu** or context-sensitive menu, select **Download Network Failure Counters**.
  3. Browse to the location in which the file will be saved, and click **OK**. A JSON file containing the counters is saved in the location that you specified.
  - In Windows, view the file in a text editor, such as Notepad++.
  - In Linux, use the **more** command to view the file (for example, `more Oscillating_Network_Failures_Counters_2016-01-28-13-31-57.json`)

### Download Network Oscillating Failure Counters

**Download file to:**

H:\Network Failures\Jan2016

- **SDCs:**
  1. In the **Frontend** view, select the **SDCs** option, and then select the required SDC.
  2. Open the Property Sheet, and click the **Oscillating Failure Counters** section.
Applying Performance Profiles to system components

You can use the GUI to apply performance profiles to system components. The high performance profile configures a predefined set of parameters for very high performance use cases. When a container is provided in the command (System/Protection Domain/Fault Set), all the objects currently in the container are configured.

Note

For a complete list of parameters controlled by the profiles, refer to the document *ScaleIO Performance Fine-Tuning Technical Notes*.

The profiles are applied separately to:

- SDSs
- SDCs
- MDM cluster

Note

After changing the performance profile of an SDS (on an SVM), you must perform manual memory allocation on the SVM, as described in the *ScaleIO Deployment Guide*.

To apply a profile to system components, perform the following steps:

Procedure

1. Depending on the system component that you want to configure, in either the *Backend > Storage* or *Frontend > SDCs* view, navigate to, and select the desired objects.
Note

If you want to apply the Performance Profile to MDMs, select the System object.

2. Right-click the object and select Set Performance Profile for XXX, where XXX represents one of the following:

- MDMs
- All SDSs
- SDS
- All SDCs
- SDC

The Set Performance Profile for window is displayed.

3. Select a profile from the drop-down list, and click OK.

Figure 47 Set Performance Profile window

Configuring I/O priorities and bandwidth use (advanced)

The ScaleIO system includes advanced settings which control I/O priorities and bandwidth use, which can be used to fine-tune system performance. It is recommended to retain default settings, unless you are an advanced user.

Application IOPS and bandwidth (advanced)

Priority can be given to different types of I/Os in the system, including application I/Os. The number of concurrent Rebuild and Rebalance jobs can be configured, along with bandwidth used for these jobs. I/O prioritization is configured per Storage Pool.

NOTICE

These features affect system performance, and should only be configured by an advanced user.

Give priority to Application I/Os during Rebuild and Rebalance jobs, by performing these steps:

Procedure

1. In the Backend > Storage view, navigate to, and select the desired Storage Pool.
2. Right-click the Storage Pool and select Set I/O Priority.
3. Select Favor Application I/O for Rebalance and Rebuild, and click OK.

**System IOPS and bandwidth (advanced)**

You can prioritize different types of I/O in the system, as well as configure network throttling per Protection Domain.

**I/O prioritization**

Priority can be given to different types of I/Os in the system. The number of concurrent Rebuild and Rebalance jobs can be configured, and bandwidth for Rebalance jobs can be configured. If the Dynamic Bandwidth Throttling option is selected, additional items can be configured, such as Application IOPS threshold, Application bandwidth threshold, and Application threshold quiet period. Default values for these features are provided in the ScaleIO CLI Reference Guide.

**NOTICE**

These features affect system performance, and should only be configured by an advanced user.

Configure I/O prioritization for Rebuild and Rebalance by performing these steps:

**Procedure**

1. In the Backend > Storage view, navigate to, and select the desired Storage Pool.
2. Right-click the Storage Pool and select Set I/O Priority.
3. Select the desired options and edit values, and click OK.

**Configuring Network Throttling**

Network throttling affects network limits, and is used to control the flow of traffic over the network. It is configured per Protection Domain. The SDS nodes transfer data between themselves. This data consists of user-data being replicated as part of the RAID protection, and data copied for internal rebalancing and recovery from failures. You can modify the balance between these types of data loads by limiting the data copy bandwidth. This change affects all SDSs in the specified Protection Domain.

**NOTICE**

These features affect system performance, and should only be configured by an advanced user. Contact EMC support before you change this configuration.

**Procedure**

1. In the Backend > Storage view, navigate to the desired Protection Domain, and select its row in the table.
2. Right-click the row and select Set Network Throttling.
   
   The Set Network Throttling window is displayed.
3. Configure the settings, and click OK.
Enabling and disabling Rebuild/Rebalance (advanced)

By default, Rebuild and Rebalance features are enabled in the system, because they are essential for system health, optimal performance, and data protection. These features should only be disabled temporarily in very specific circumstances, and should not be left disabled for long periods of time. Rebuild and Rebalance features are enabled and disabled per Storage Pool.

NOTICE

Rebuilding is an essential part of the ScaleIO system, which provides protection for your data. It is not recommended to disable the Rebuild feature, except in very special circumstances. Rebalancing is an essential part of the ScaleIO system, and should only be disabled, temporarily, in special circumstances. Disabling rebalance may cause the system to become unbalanced even if no capacity is added or removed. For example, during a recovery from an SDS or device failure, some rebalance activity may be needed to ensure optimal balancing.

To enable or disable Rebuild and Rebalance features, perform these steps:

Procedure

1. In the Backend > Storage view, navigate to, and select the desired Storage Pools.
2. Right-click the Storage Pool and select Enable/Disable Rebuild/Rebalance. The Enable or Disable Rebuild and Rebalance window is displayed.
3. Select or clear the options that you require (selected=enable; clear=disable), and click OK.

Using the background device scanner

The background device scanner scans devices in the system to check for errors. You can enable and disable the background device scanner, as well as reset the background device scanner counters. Information about errors will be provided in event reports. For more information about viewing events, see Viewing events on page 251.
Enabling and disabling the background device scanner

The scanner can be enabled on all the devices in the specified Storage Pool. There are two modes: device only mode, and data comparison mode:

- Device only—Perform read operations. Fix from peer on errors.
- Data comparison—Perform the device-only test, and compare the data content with peer. Zero padding must be enabled in order to set the background device scanner to data comparison mode.

To enable or disable the background device scanner, follow these steps:

Procedure

1. In the Backend > Storage view, navigate to, and select the desired Storage Pools.
2. From the Command menu or context-sensitive menu, select Set Background Device Scanner Mode.

   The Configure Storage Pool Background Device Scanner window is displayed. The right pane of the window displays the Storage Pools that you are configuring.

3. For the Enable Background Device Scanner option, perform one of the following:
   - To enable the scanner, select the check box, and proceed to the next step.
   - To disable the scanner, clear the check box, and click OK to finish.

4. Select an option (selected=enable; clear=disable):
   a. Device only
   b. Data comparison

5. In the Bandwidth Limit box, accept the default or type a number in KB per second (per device).

   The given value should be in the range 10 KB-10 MB (default = 1 MB).

   **Note**

   High bandwidth should be used very carefully for extreme cases only (such as an urgent need to check some devices), as it may create negative impact on system performance. Setting the background device scanner bandwidth should take into account maximum bandwidth of the devices.

6. Click OK.
Resetting the background device scanner counters

You can reset background device scanner error counters for specified Storage Pools. Counters for data comparison errors, or corrected read errors, or both counter types can be reset.

To reset counters, follow these steps:

**Procedure**

1. In the **Backend > Storage** view, navigate to, and select the desired Storage Pools.
2. Right-click the Storage Pools and select **Reset Background Device Scanner Counters**.
   
   The **Reset Background Device Scanner Counters** window is displayed. The right pane of the window shows the Storage Pools that you are configuring.
3. Select or clear the option that you require, or both options (selected=enable; clear=disable).
4. Click **OK**.

**Modifying Checksum protection mode**

Checksum mode can be used to validate in-flight data reads and writes, in order to protect data from data corruption. To modify this setting, perform the following steps:
Procedure

1. In the **Backend** view, navigate to, and select the desired Storage Pools.
2. From the **Command menu** or context-sensitive menu, select **Configure Use Checksum**.
   The **Configure Use Checksum** window is displayed.
3. Do one of the following:
   a. To enable the Checksum feature, select the **Enable Use Checksum** check box.
   b. To disable the Checksum feature, clear the **Enable Use Checksum** check box.
4. Click **OK**.

![Figure 51 Configure Use Checksum window](image)

### Renaming objects

Object names are used to identify the objects in the GUI, and can also be used to specify objects in CLI commands. You can view an object’s name in its Property Sheet, in the **Identity** section.

**Note**

It is not possible to rename a Read Flash Cache device using this command.

You can define object names according to the following rules:

1. Contain less than 32 characters
2. Contain only alphanumeric and punctuation characters
3. Be unique within the object type

When a name has not been defined, the system may display default system-defined names, as follows:

- **SDC**—its first IP address
- **SDS**—its first IP address
- **Device**—the path to the device
- **All other objects**—the object’s ID
A name must be assigned to a volume when it is initially created. You can rename the volume later, using the Rename command.

Procedure
1. Depending on the object type, in the Backend > Storage or any of the Frontend views, navigate to the object in the table, and select its row.
2. Right-click the object and select Rename.
   An editing window is displayed, showing the current name, and an editable field for the new name.
3. Type the new name in the field, and click OK.

Approving pending security certificates
Approve pending security certificates, and view approved certificates in the System Settings window.

Procedure
1. From the System Settings menu in the top right corner, select System Settings.
   The System Settings window appears, showing approved and pending certificates.
2. Scroll to connections that are Pending Approval, and expand the rows.
3. For each one, scroll to the bottom of the information about the required certificate, and click Confirm.

Customizing system preferences
You can customize various features in the GUI using the User Preferences window. The following features can be customized:
- Refresh data rate
- Clear host history from previous sessions
- Calculation of I/O workload average rate shown on the Dashboard
- System clock display
- Advanced display mode for Dashboard, Backend internal views, Frontend internal views, and Property Sheet
- Log level

Procedure
1. From any location in the GUI, open the System Settings menu in the top right corner, and select User Preferences.
   The User Preferences window is displayed.
2. Edit the options according to your needs, and click **Apply**.

![User Preferences window](image)

**Figure 52 User Preferences window**

**Table 18 User Preferences**

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General: Refresh data every n seconds</td>
<td>Controls the rate at which data displayed in the GUI is refreshed, in seconds (Default: 10 seconds)</td>
</tr>
</tbody>
</table>
### Table 18 User Preferences (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The refresh occurs at least at the specified rate. It is not intended to be used as a means of limiting client traffic, although it would actually do so.</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Login:</strong> Clear host history</td>
<td>When selected, the GUI does not save and present host connection details from previous sessions</td>
</tr>
<tr>
<td><strong>Dashboard I/O workload:</strong> Average calculation will include the last ( n ) seconds</td>
<td>Controls the time period used when averages are computed and displayed by the GUI (default: 10 seconds)</td>
</tr>
<tr>
<td><strong>Show advanced dashboard</strong></td>
<td>When selected, (default), includes more details on some tiles in the Dashboard view. The toggle buttons switch between the statistics displayed in large fonts and small fonts. The upper button toggles between average values and sample values. The lower button toggles between display of bandwidth or IOPs in large fonts on this tile. The ( \supset ) symbol means that the number displayed is the average taken during the last ( n ) seconds. ( n ) can be configured in <strong>Dashboard I/O Workload</strong> in this window. The ( \supset ) symbol means that the number displayed is from the last data sample that was taken. The period between automatic refreshes can be configured in <strong>Dashboard I/O Workload</strong> in this window.</td>
</tr>
<tr>
<td><strong>System Clock</strong></td>
<td>Show system clock on the Dashboard</td>
</tr>
</tbody>
</table>
| **Show Property Sheet in advanced mode** | Displays additional details in Property Sheets:  
  - Capacity section—Snapshot Capacity Reserved  
  - Rebuild/Rebalance—Data Movement Jobs  
  - RAM Read Cache—Cache Evictions, Cache Entry, and Cache Skip tables  
  These details are usually only relevant for advanced users and technical support purposes. |
| **Frontend Internals:** Show VVols | Displays additional information for VVols |
| **Backend Internals:** Show internal Backend views | Displays additional options for Backend table views. These options are recommended only for advanced users and technical support purposes. |
| **Support:** Log level | Controls the type of data saved in system logs, which may be required by Customer Support for troubleshooting purposes. The default setting recommended for regular operation is Info. Other options include: Trace, Debug, Warn, and Error. |
### Table 18 User Preferences (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Note</strong></td>
<td>Trace and Debug options may affect system performance, and are usually only recommended for technical support purposes.</td>
</tr>
<tr>
<td></td>
<td>For more information about logs, see your system's Log Collection Technical Notes.</td>
</tr>
</tbody>
</table>
CHAPTER 12

Using the VMware Plug-in

The following topics describe how to use the VMware plug-in (the “plug-in”) to view and provision ScaleIO components.

- VMware Plug-in overview ................................................................. 206
- Configuring components ................................................................. 207
- Viewing components ...................................................................... 216
VMware Plug-in overview

The VMware plug-in communicates with the MDM and the vSphere server, enabling you to view components and perform many configuration/provisioning tasks right from within the VMware environment.

Before benefiting from ScaleIO, you must create volumes and map them to SDCs installed on the ESX hosts. This requires the following steps:

1. Creating a volume
2. Mapping the volume to all SDCs

This set of manual tasks is automated in the plug-in, as described in "Creating, mapping, and unmapping volumes".

To use the plug-in, it must be registered in your vCenter. For more information, see the ScaleIO Deployment Guide.

To open the plug-in, in the vSphere Web Client click .

The EMC ScaleIO screen appears.

The ScaleIO screen displays an overview of the configured components. In this example, one system has been configured, with the following components:

- Protection Domain—1
- Storage Pool—2
- SDS—3
- SDC—3
- Volumes—0
- Devices—9
- Fault Set—0

You can use the plug-in to configure and view ScaleIO components.

**Configuring components**

There are two levels of component configurations:

- **Basic**: The basic configurations are all performed the same way. The process is described just once.
- **Advanced**: Each advanced configuration setting has a unique dialog box, which is described in “Configuring components—advanced”.

The following table lists the activities you can perform and categorizes each as basic or advanced:

<table>
<thead>
<tr>
<th>Object</th>
<th>Perform this activity</th>
<th>Basic or advanced</th>
<th>Access from this screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Deploy ScaleIO system</td>
<td>Advanced. See the EMC ScaleIO Deployment Guide.</td>
<td>![EMC ScaleIO]</td>
</tr>
<tr>
<td></td>
<td>Register an existing system</td>
<td>Basic. Enter the system Master MDM IP address, user name, and password.</td>
<td>![EMC ScaleIO]</td>
</tr>
<tr>
<td></td>
<td>Unregister a system</td>
<td>Basic</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td></td>
<td>Update system credentials</td>
<td>Basic. Enter new user name and password.</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td></td>
<td>Configure virtual IPs</td>
<td>Advanced</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td>ScaleIO Gateway</td>
<td>Register/Update Gateway</td>
<td>Basic. Enter IP address, OS user name, and OS password.</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td></td>
<td>Open Gateway</td>
<td>Basic. Navigates to the Gateway Installation Manager.</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td>Protection Domain</td>
<td>Create a Protection Domain</td>
<td>Basic</td>
<td>![ScaleIO Systems]</td>
</tr>
<tr>
<td></td>
<td>Remove a Protection Domain</td>
<td>Basic</td>
<td>![Protection Domains]</td>
</tr>
<tr>
<td>Storage Pool</td>
<td>Create a Storage Pool</td>
<td>Basic</td>
<td>![Protection Domains]</td>
</tr>
<tr>
<td></td>
<td>Remove a Storage Pool</td>
<td>Basic</td>
<td>![Storage Pools]</td>
</tr>
</tbody>
</table>
### Table 19 Plug-in activity matrix (continued)

<table>
<thead>
<tr>
<th>Object</th>
<th>Perform this activity</th>
<th>Basic or advanced</th>
<th>Access from this screen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Configure RAM Read Cache</strong></td>
<td></td>
<td>Basic(^a)</td>
<td>Storage Pools</td>
</tr>
<tr>
<td>SDS</td>
<td>Add a device to an SDS</td>
<td>Advanced</td>
<td>SDSs</td>
</tr>
<tr>
<td></td>
<td>Remove a device from an SDS</td>
<td>Basic</td>
<td>Devices</td>
</tr>
<tr>
<td>SDC</td>
<td>Install SDC on ESX</td>
<td>Advanced</td>
<td>EMC ScaleIO</td>
</tr>
<tr>
<td></td>
<td>Upgrade SDC</td>
<td>Advanced</td>
<td>SDCs</td>
</tr>
<tr>
<td></td>
<td>Update SDC Parameters</td>
<td>Advanced</td>
<td>EMC ScaleIO</td>
</tr>
<tr>
<td><strong>Volume</strong></td>
<td>Create and map volumes</td>
<td>Advanced</td>
<td>Storage Pools</td>
</tr>
<tr>
<td></td>
<td>Map a volume</td>
<td>Advanced</td>
<td>Volumes</td>
</tr>
<tr>
<td></td>
<td>Remove a volume (must be unmapped first)</td>
<td>Basic</td>
<td>Volumes</td>
</tr>
<tr>
<td></td>
<td>Unmap a volume</td>
<td>Advanced</td>
<td>Volumes</td>
</tr>
<tr>
<td></td>
<td>Configure RAM Read Cache</td>
<td>Basic(^a)</td>
<td>Volumes</td>
</tr>
<tr>
<td><strong>Fault Set</strong></td>
<td>Create a Fault Set</td>
<td>Basic(^b)</td>
<td>Protection Domains</td>
</tr>
<tr>
<td><strong>Device</strong></td>
<td>Clear a device error</td>
<td>Basic</td>
<td>Devices</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>&lt;br&gt;Removes the error message. Can be performed only after clearing the error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Add a device to an SDS</td>
<td>Advanced</td>
<td>SDSs</td>
</tr>
<tr>
<td></td>
<td>Remove a device from an SDS</td>
<td>Basic</td>
<td>Devices</td>
</tr>
</tbody>
</table>
Table 19 Plug-in activity matrix (continued)

a. For RAM Read Cache to work on a volume, both the volume and its Storage Pool must have the feature enabled.

b. When defining Fault Sets, you must follow the guidelines described in Fault Sets on page 35. Failure to do so may prevent creation of volumes.

Configuring components—basic

This section shows how to perform basic configuration activities. All activities are performed from the Actions menu in each screen and entering simple information.

For example, to create a Protection Domain from the ScaleIO Systems screen, perform the following:

**Procedure**

1. From the ScaleIO Systems screen, click Actions > Create Protection Domain:

![Create Protection Domain](image)

**Note**

You can also click the action icons 🤝 in the menu or right-click the item to choose options from a list.

The Create Protection Domain dialog box appears:

![Create Protection Domain dialog box](image)

2. Enter a name for the Protection Domain, then click OK.

The process is similar for the rest of the basic activities.
If you intend to enable zero padding on a Storage Pool, you must do so before you add any devices to the Storage Pool. For more information, see Storage Pools on page 33.

Configuring components—advanced

This section describes how to use the ScaleIO vSphere plug-in to perform activities that require a little more attention.

Registering an existing system

Register an existing ScaleIO system.

Procedure

1. From the main plug-in window, click Register ScaleIO system.
2. Enter the following information, then click OK:
   a. Master MDM IP: The IP address of the existing system's Master MDM
   b. User name: The username of the existing system
   c. Password: The password of the existing system

Creating, mapping, and unmapping volumes

This section describes how to use the plug-in to create, map, and unmap volumes in the VMware environment. You can map volumes to SDCs in the same step, or you can map the volume after it has been created.

Creating and mapping volumes

Volumes are created from devices in a Storage Pool.

Procedure

1. From the Storage Pools screen, click Actions > Create volume.

   The Create Volume dialog appears:
2. Enter the following information:

- **Volume name**: Enter a name for the new volume.
- **Number of volumes to create**: Enter the number of volumes to create. Multiple volumes appear as `volume_name-X`.
- **Volume size**: Enter the size of the volume. This must be in multiples of 8 GB.
- **Volume provisioning**: Select thick or thin provisioning.
- **Use RAM Read Cache**: Select to enable RAM Read Cache for the created volumes. Use of RAM Read Cache is determined by the policy for the Storage Pool and the volume.
- **Obfuscation**: Select whether the volume should be obfuscated.

3. To map the volume to ESXs, perform the following steps:
   a. Select **Map volume to ESXs**.
   b. In the **Select ESXs** area, select the clusters or ESXs to which this volume should be mapped.
   c. Click **OK**.
   d. Enter the password for the ScaleIO administrative user.

   The following figure illustrates multiple volumes created:

   ![Multiple Volumes Created](image)

**Mapping volumes**

You can manually map volumes after they have been created, from the **Volumes** screen.

**Procedure**

1. From the **Volumes** screen, select a volume to map, then choose **Actions** > **Map a volume**.

   The **Map Volume to ESXs** dialog appears.
2. Select the clusters or ESXs to which this volume should be mapped.

3. To configure the LUN identifier manually, select **Manually configure LUN identifier to** and enter the identifier ID.

4. Click **OK**.

**Unmapping a volume**

This topic describes how to use the plug-in to unmap a volume from an ESX.

**Procedure**

1. From the **Volumes** screen, select the volume to unmap, and choose **Actions > Unmap volume**.

   The **Unmap Volume from ESXs** dialog appears.
2. Select the ESXs or clusters from which to unmap the volume, then click OK.

Adding devices to an SDS

Use the vSphere plug-in to add devices to an SDS in a ScaleIO system.

In an RDM/VMDK-based ScaleIO system, you can add devices during and after the deployment. In a DirectPath-based system, you add devices only after the deployment.
You can add devices to a single SDS or to all SDSs in the system. The first option is quicker, but is limited to one SDS at a time.
All data on added devices will be erased.

Note
If you intend to enable zero padding on a Storage Pool, you must do so before you add any devices to the Storage Pool.

Procedure

1. From the SDSs screen of the ScaleIO vSphere plug-in, select one of the following:
   - Right-click a specific SDS, then select Add devices to a single SDS.
   - Right-click any SDS, then select Add devices to ScaleIO system.

   The Add Device dialog appears. All devices that can be attached to the selected SDS are listed. For the system view, all SDSs are listed, and you can choose
devices to add for each SDS. It may take a few moments to load the list of devices from the vCenter.

2. Add devices:
   - One-at-a-time:
     a. Select whether the device should be used for storage or to provide acceleration.
     b. Select the Storage Pool to which the devices should be assigned.
     c. To enable the use of devices that may have been part of a previous ScaleIO system, select Allow the take over of devices with existing signature.
     d. Click OK.
   - All devices on a server at once:
     a. Click Select all devices.
     b. Select whether to use the devices for storage or to provide acceleration.
     c. Select the Storage Pool to which the devices should be assigned.
     d. To enable the use of devices that may have been part of a previous ScaleIO system, select Allow the take over of devices with existing signature.
     e. Click Assign.

3. Confirm the action, by typing the ScaleIO password.

4. When the add operation is complete, click Close.

Results
The devices are added.

Upgrading an SDC
Upgrading an SDC is performed with the plug-in. This topic is described in the ScaleIO Deployment Guide.

Updating SDC parameters
Updating SDC parameters is necessary to ensure MDM-SDC communication when MDM IP addresses have been added or changed. This procedure, performed with the plug-in, is described in the ScaleIO Deployment Guide.

Note that there are differences in the way to perform this task, depending on the SDC version, as described in the guide.

Configuring virtual IP addresses
Configure virtual IP addresses in the vSphere Web plug-in.

Procedure
1. From the ScaleIO Systems screen, click Actions and select Configure virtual IPs.
2. In the Configure virtual IPs dialog box, select the network and enter a virtual IP address.
Figure 53 Configure virtual IPs dialog box

<table>
<thead>
<tr>
<th>Network</th>
<th>Virtual IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>192.168.101.70</td>
</tr>
</tbody>
</table>

Note
Virtual IP addresses can only be added. To change or remove addresses, use the CLI.

After you finish
Update the SDC parameters to update the SDC configuration. For more information, see Updating SDC parameters on page 215.

Viewing components
To view an installed component, click it from the ScaleIO list.
Every component shows details that are relevant to the selected component.
For example, when you select ScaleIO systems, the following system details appear:

To drill down for more details, double-click the displayed details:
When you select **Storage Pools**, the following details appear:

![Image of Storage Pools](image)

When you drill-down on this screen, the following details appear:

![Image of Drilled-Down Storage Pools](image)

You can view the properties of all the ScaleIO components in the menu:
Using the VMware Plug-in

[Image of a tree structure with nodes labeled as follows:]
- **EMC ScaleIO**
  - ScaleIO Systems: 1
  - Protection Domains: 1
  - Storage Pools: 2
  - SDSs: 3
  - SDCs: 3
  - Volumes: 0
  - Devices: 9
  - Fault Sets: 0
The chapters in this part of the guide describe various topics related to advanced management.

Chapters include:

Chapter 13, "Common Tasks"
Chapter 14, "System events"
Chapter 15, "ScaleIO on Xen"
Chapter 16, "Configuring ScaleIO in OpenStack Environments"
Chapter 17, "SNMP Trap Support"
Chapter 18, "ScaleIO SDC on AIX server"
CHAPTER 13
Common Tasks

The following topics describe common tasks that are performed when working with ScaleIO.

- Install the ScaleIO GUI ................................................................. 222
- Log in to the ScaleIO GUI ............................................................. 222
- Connection and disconnection information ................................. 223
- Add LIA to a system to enable automated upgrade ...................... 223
- Associating ScaleIO volumes with physical disks ......................... 224
- Port usage and changing default ports ....................................... 227
- Adding an external SDC to an existing ScaleIO system ............... 228
- Changing the LIA configuration file ............................................. 231
- Cleaning the ScaleIO VMware environment and performing a clean install ... 231
- Configuring ScaleIO devices in Linux LVM ................................ 233
- Configuring session timeout parameters .................................... 234
- Fixing keytool errors .................................................................. 234
- Installing Java on SUSE 12 servers ............................................. 235
- SVM manual memory allocation .................................................. 235
- Upgrading Java ........................................................................... 237
- Mounting ScaleIO ....................................................................... 237
- The ScaleIO Gateway web server isn’t responding ..................... 238
- Upgrading the Gateway when a custom certificate is used ........... 240
- Uploading a new OVA ................................................................. 240
- Using the same data network for different NICs .......................... 241
- What to do when the default self-signed certificate expires .......... 241
- Add another IP address subnet to an MDM cluster ...................... 241
- Shutdown or restart a node gracefully ....................................... 243
- Deployment of ScaleIO using a non-root user ......................... 246
Install the ScaleIO GUI

You can install the ScaleIO GUI.

Before you begin

- Ensure that the workstation satisfies the requirements described in the "System Requirements" section of the documentation.
- Get the installation file either from the product ISO or the EMC Support Site.

Procedure

1. Install the GUI:
   - Windows:
     - EMC-ScaleIO-gui-2.5-<build>.X.msi
   - Linux:
     - rpm -i EMC-ScaleIO-gui-2.5-<build>.X.noarch.rpm
   - Debian (run with administrator privileges):
     - sudo dpkg -i EMC-ScaleIO-gui-2.5-<build>.X.deb

After you finish

To log in to the GUI, see "Log in to the ScaleIO GUI."

Log in to the ScaleIO GUI

Open and log in to the ScaleIO GUI.

Before you begin

Ensure that:

- The GUI software is installed on the workstation. To install the GUI, see "Install the ScaleIO GUI."
- You have these credentials (available from the administrator):
  - MDM management IP address or hostname
  - Username (default: admin)
  - Password (defined during deployment)

Procedure

1. Open the GUI:
   - Linux: Run the script /opt/emc/scaleio/gui/run.sh.
   - Windows: Click Start > All Programs > ScaleIO GUI
   The initial login screen is displayed.
2. Type the IP address or hostname and click Connect.
   - If a certificate notice is displayed, review and accept the certificate.
If a login banner is displayed, confirm it to continue.

3. In the login screen, type the username and password, and click **Login**.

**Results**
The ScaleIO GUI is displayed.

**After you finish**
Users and passwords are configured with the ScaleIO CLI. For more information, see the "Security" chapter of the *ScaleIO User Guide*.

## Connection and disconnection information

You can check at any time to which IP address your GUI is connected, using the following methods:

- View the IP address displayed in the top left corner of the GUI window.
- Hover your mouse pointer over the **Management** tile on the Dashboard. A tooltip displays connection information for the nodes in the MDM cluster, and the management IP addresses. If your GUI loses its connection with the MDM, the window display is dimmed, and a notification dialog box is displayed.

## Add LIA to a system to enable automated upgrade

Add the LIA, a component that is required to use the Installation Manager to upgrade ScaleIO physical server system components.

**Before you begin**
To determine if the LIA is installed, run the following command on any server in the system:

```
rpm -qa | grep -i LIA
```

If LIA is not installed, you must install it before performing the upgrade.

Physical machine upgrade uses the Installation Manager (IM, part of the ScaleIO Gateway), together with the LIA of the new version, to orchestrate the upgrade.

**Procedure**

1. Install the LIA component on every node, by running the following command:

   ```
 TOKEN=<LIA_password> rpm -i <full rpm path to LIA file>
   ```

   **Example:**

   ```
 TOKEN=Scaleio123 rpm -i EMC-ScaleIO-lia-2.5-
 <build>.X.<flavor>.x86_64.rpm
   ```

   The password must meet the following criteria:
   - Between 6 and 31, ASCII-printable characters
   - No blank spaces
Include at least 3 of the following groups: [a-z], [A-Z], [0-9], special chars (! @#$ …)

2. Import the system installation ID into the LIA:

   a. Create the following file:

   `/opt/emc/scaleio/lia/cfg/installation_id.txt`

   b. Query the MDM for the installation ID by running the following command:

   ```
 scli --query_all|grep "Installation ID"
   ```

   c. Copy the installation ID into the new file.

   d. Restart the LIA service by running the following command:

   ```
 pkill lia
   ```

3. Repeat the previous steps on every node in the system.

**Results**

LIA is installed.

## Associating ScaleIO volumes with physical disks

This section describes how to associate volumes with physical disks.

Contact ScaleIO Customer Support for access to the troubleshooting utility.

To get ScaleIO volume information, run the `scli --query_all_volumes (or --query_all or --query_volume)` command.

**Output similar to the following appears:**

```
Query-all-volumes returned 10 volumes
Protection Domain 0728185400000000 Name: pd1
Storage Pool ad99eaab00000000 Name: default
<No volumes defined>
```

```
Storage Pool ad99eaac00000001 Name: sp1
Volume ID: fac2a63000000000 Name: vol0 Size: 152.0 GB (155648 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a640000000001 Name: vol1 Size: 400.0 GB (409600 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a650000000002 Name: vol2 Size: 80.0 GB (81920 MB) Mapped to 1 SDC Thick-provisioned Volume ID: fac2a660000000003 Name: vol3 Size: 382.0 GB (401408 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a670000000004 Name: vol4 Size: 96.0 GB (98304 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a680000000005 Name: vol5 Size: 112.0 GB (114688 MB) Mapped to 1 SDC Thick-provisioned Volume ID: fac2a690000000006 Name: vol6 Size: 96.0 GB (98304 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a6a0000000007 Name: vol7 Size: 176.0 GB (180224 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a6b0000000008 Name: vol8 Size: 272.0 GB (278528 MB) Mapped to 1 SDC Thin-provisioned Volume ID: fac2a6c0000000009 Name: vol9 Size: 360.0 GB (368640 MB) Mapped to 1 SDC Thin-provisioned
```

This output shows the Volume ID and name, as well as other volume information.

**Volume information - Linux**

On the SDC host, run the following command to get the operating system volume information that correlates to the ScaleIO scini device name:

```
ls -l /dev/disk/by-id/ |grep scini
```
This output shows the scini volume name and the volume ID.
By matching the volume ID in both outputs, you can match the operating system names, sciniX, with the ScaleIO volume name.
For example:
- `scinia = fac22a630000000 = vol0`
- `scinic = fac22a6400000001 = vol1`
Alternatively, run the `sg_inq /dev/sciniX` SCSI query command. The result of this command includes the EMC volume ID at the bottom of the output, as illustrated in the following figure:

```
Vendor identification: EMC
Product identification: ScaleIO
Product revision level: 1.3
Unit serial number: EMC-62c093a52d14aec7-fac22a6300000000
```

Note
The sg3_utils must be installed on the Linux host in order to run this command.

---

Volume information - Windows

The `sg_inq.exe` file was added to the MSI installation and can be found at C:\Program Files\EMC\ScaleIO\SDC\diag\.

Procedure

1. Run the `sg_inq HardiskX` SCSI query command.
   The result of this command includes the EMC volume ID at the bottom of the output.
2. On the MDM, get the ScaleIO volume information:

```
C:\Program Files\emc\scaleio\sdc\bin\drv_cfg --query_vol
```

Output similar to the following is displayed:

```
Retrieved 5 volume(s)
VOL-ID 6acb988100000000 MDMA-0b246c9a755ca3dd
VOL-ID 6acb988200000001 MDMA-0b246c9a755ca3dd
VOL-ID 6acb988300000002 MDMA-0b246c9a755ca3dd
VOL-ID 6acb988400000003 MDMA-0b246c9a755ca3dd
VOL-ID 6acb988500000004 MDMA-0b246c9a755ca3dd
```
3. From the Windows command prompt, run this command:

```
wmic diskdrive get deviceid,serialnumber | findstr "EMC"
```

Output similar to the following is displayed:

```
\\\.PHYSICALDRIVE13 EMC-0b246c9a755ca3dd-6acb988500000004
```

The first part of the output is the disk name. In our example:

```
PHYSICALDRIVE13
```

The second part is the disk serial number. The last set of the second part (after
the dash) is the ScaleIO volume ID. In our example:

```
6acb988500000004
```

After you finish

You can also get the volume ID from the ScaleIO GUI by displaying the Identity pane of the volume's properties sheet from Frontend > Volumes

**Volume information - AIX**

On AIX servers, associate the ScaleIO volume ID with the AIX physical device.

Retrieve the CuAt volume value:

**Procedure**

1. On the SDC host, run the following command to get the operating system volume information:

```
#odmget -q "name like scinid* and attribute=vol_id" CuAt
```

Output, similar to the following, is displayed:

```
CuAt:
name = "scinid0"
attribute = "vol_id"
value = "e120a92d00000000"
type = "R"
generic = "D"
rep = "s"
nls_index = 22
[root@cnnode02]#odmget -q "name like scinid* and attribute=vol_id" CuAt
```

```
CuAt:
name = "scinid2"
attribute = "vol_id"
value = "e120a92f00000002"
type = "R"
generic = "D"
rep = "s"
nls_index = 22
```

```
CuAt:
name = "scinid8"
attribute = "vol_id"
value = "e120a93500000008"
type = "R"
generic = "D"
rep = "s"
nls_index = 22
```
You can get information for a single volume, by using this command:

```
#odmget -q "name=scinid0 and attribute=vol_id" CuAt
```

2. Match the value of the `value` field with the ScaleIO volume ID.

## Port usage and changing default ports

The following table lists the TCP ports that are used by ScaleIO. Prior to installing or upgrading a system, ensure that these ports are not in use by other processes.

If they are in use, either free them or change them to another available port.

### Table 20 Default ports

<table>
<thead>
<tr>
<th>Port used by</th>
<th>Port #</th>
<th>Protocol</th>
<th>Field to change</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDM listener</td>
<td>6611</td>
<td>Protobuf over TCP</td>
<td>Note (cannot be modified, and must be available)</td>
<td></td>
</tr>
<tr>
<td>MDM Cluster member</td>
<td>9011</td>
<td>Protobuf over TCP</td>
<td>/opt/emc/scaleio/mdm/cfg/conf.txt</td>
<td>actor_cluster_port=&lt;NEW_PORT&gt;</td>
</tr>
<tr>
<td>SDS listener</td>
<td>7072</td>
<td>Proprietary protocol over TCP</td>
<td>/opt/emc/scaleio/sds/cfg/conf.txt</td>
<td>tgt_port=&lt;NEW_PORT&gt; SDCs connect through this port for data communication and to the MDM for meta-data communication. When multiple SDSs are installed on the same physical server, use ports 7072+x, where x is the index of the SDS (for example, 70721, 70722).</td>
</tr>
<tr>
<td>LIA listener</td>
<td>9099</td>
<td>Protobuf over TCP</td>
<td>/opt/emc/scaleio/lia/cfg/conf.txt</td>
<td>lia_port=&lt;NEW_PORT&gt; The Installation Manager connects to the LIA to perform installation and maintenance-related operations.</td>
</tr>
</tbody>
</table>
| Gateway-Installation Manager/REST (not secure) | 80 (or 8080, together with 8443) | REST over HTTPS | <gateway installation directory>/conf/catalina.properties | http.port=80 (or 8080) After changing the port, you must restart the service/daemon:  
  - Linux: Run `service scaleio-gateway restart`  
  - Windows: Restart the EMC ScaleIO Gateway service |
| Gateway-Installation | 443 (or 8443) | REST over HTTPS | <gateway installation | ssl.port=443 (or 8443) | |

After changing the port, you must restart the service/daemon:

- **Linux:** Run `service scaleio-gateway restart`
- **Windows:** Restart the EMC ScaleIO Gateway service
Table 20 Default ports (continued)

<table>
<thead>
<tr>
<th>Port used by</th>
<th>Port #</th>
<th>Protocol</th>
<th>File to change</th>
<th>Field to modify (or to add, if it does not exist)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manager/REST (secure)</td>
<td>together</td>
<td></td>
<td>directory&gt;/conf/catalina.properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with 8080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNMP</td>
<td>162</td>
<td>SNMP v2 over UDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDBG for MDM (Manager)</td>
<td>25620</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDBG for MDM (Tie Breaker)</td>
<td>25600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDBG for SDS</td>
<td>25640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SNMP traps for system alerts are sent to a trap receiver via this port. The ScaleIO gateway sends messages to: snmp.traps_receiver_ip on the port snmp.port

Adding an external SDC to an existing ScaleIO system

During manual installation, you can install the SDC according to the operating system-specific instructions in the following section, and it will be connected to the existing ScaleIO system.

Installing SDC on an ESX server and connecting it to ScaleIO

Install the SDC with the appropriate parameters to connect it to an existing ScaleIO system.

Before you begin

Ensure that you have:

- The virtual IP address or MDM IP address of the existing system
- Login credentials for the SDC
- The appropriate installation packages for the SDC
- Access to the drv_cfg tool. Contact EMC support for access to this tool on ESX.

The following procedure describes installing an external SDC on an ESX server using the esxcli. Alternatively, you can install the external SDC using the vSphere plug-in. For more information, see "Installing the SDC on ESX hosts" in the ScaleIO Deployment Guide.

Procedure

1. On the ESX on which you are installing the SDC, set the acceptance level:

```bash
esxcli --server=<SERVER_NAME> software acceptance set --level=PartnerSupported
```
where `<SERVER_NAME>` is the ESX on which you are installing the SDC.

2. Install the SDC:

```
esxcli software vib update -d “Full Path”
```

3. Set the IP address of the MDM:

```
esxcli system module parameters set -m scini -p "IoctlIniGuidStr=<XXXXXX>_IOCTLMdmIPStr=<LIST_VIP_MDM_IPS>"
```

where

- `<LIST_VIP_MDM_IPS>` is a comma-separated list of the MDM IP addresses or the virtual IP address of the MDM
- `<XXXXXX>` is the version

**Results**
The SDC is installed on the ESX server and is connected to the ScaleIO system.

### Installing SDC on a Linux server and connecting it to ScaleIO

Install the SDC with the appropriate parameters to connect it to an existing ScaleIO system.

**Before you begin**
Ensure that you have:

- The virtual IP address or MDM IP address of the existing system
- Login credentials for the SDC
- The appropriate installation packages for the SDC

The following procedure describes manually installing an external SDC on a Linux server. On most servers (with the exception of hLinux), you can install the external SDC using the Installation Manager. For more information, see "Extending an existing ScaleIO system" in the ScaleIO Deployment Guide.

**Note**
External SDC on RHEL 7.4 is supported on bare-metal servers only, not as guests on a hypervisor.

**Procedure**

1. Install the SDC:

   - RHEL/CentOS /Oracle Linux
     ```
 MDM_IP=<LIST_VIP_MDM_IPS> rpm -i <SDC_PATH>.rpm
     ```
   - CoreOS
     ```
 MDM_IP=<LIST_VIP_MDM_IPS> ./<LIST_VIP_MDM_IPS>.bsx
     ```

   where
Install SDC on an AIX server and connect it to ScaleIO

Install the SDC with the appropriate parameters to connect it to an existing ScaleIO system.

Before you begin

Ensure that you have:

- The virtual IP address or MDM IP address of the existing system
- Login credentials for the SDC
- The appropriate installation packages for the SDC

The following procedure describes manually installing an external SDC on an AIX server. The Installation Manager cannot be used.

Procedure

1. Install the SDC:

```bash
MDM_IP=<LIST_VIP_MDM_IPS> rpm -i <SDC_PATH>.rpm
```

where

- `<LIST_VIP_MDM_IPS>` is a comma-separated list of the MDM IP addresses or the virtual IP address of the MDM
- `<SDC_PATH>` is the path where the SDC installation package is located.

The SDC package is in a format similar to this: EMC-ScaleIO-sdc-<version>-X.<build>.aix7.aix7.2.ppc.rpm

Results

The SDC is installed on the AIX server and is connected to the ScaleIO system.

Installing SDC on a Windows server and connecting it to ScaleIO

Install the SDC with the appropriate parameters to connect it to an existing ScaleIO system.

Before you begin

Ensure that you have:

- The virtual IP address or MDM IP address of the existing system
- Login credentials for the SDC
- The appropriate installation packages for the SDC

The following procedure describes manually installing an external SDC on a Windows server. Alternatively, you can install the external SDC using the Installation Manager. For more information, see "Extending an existing ScaleIO system" in the ScaleIO Deployment Guide.
Procedure

1. On the Windows server on which you are installing the SDC, run:

   msiexec /i <SDC_PATH>.msi MDM_IP=<LIST_VIP_MDM_IPS>

   where
   - `<SDC_PATH>` is the path where the SDC installation package is located
   - `<LIST_VIP_MDM_IPS>` is a comma-separated list of the MDM IP addresses or the virtual IP address of the MDM

Results

The SDC is installed on the Windows server and is connected to the ScaleIO system.

Changing the LIA configuration file

You can change the default behavior of the LIA by editing the configuration file:

- **Windows**: C:\Program Files\emc\scaleio\LIA\cfg\conf.txt
- **Linux**: /opt/emc/scaleio/lia/cfg/conf.txt

The following are some values relevant to LIA behavior:

```plaintext
lia_token=5
lia_enable_install=1
lia_enable_uninstall=1
lia_enable_configure_fetch_logs=1
```

For example, to restrict which Gateway IP addresses can access the LIA, add those IP addresses to this line in the `conf.txt` file:

```plaintext
lia_trusted_ips=<IP_ADDRESS_1>,<IP_ADDRESS_2>
```

To set this during LIA installation, set the TRUSTED_IPS environment variable. For example:

```bash
TRUSTED_IPS=1.2.3.4,5.6.7.8 rpm -i lia.rpm
```

Cleaning the ScaleIO VMware environment and performing a clean install

This topic explains how to clean the ScaleIO VMware environment and perform a clean install while using previously defined networks.

Before you begin

Before you begin, unmap and delete any ScaleIO volumes in your system.

If necessary, unregister your ScaleIO system from within the plugin and delete all the ScaleIO SVMs.
Procedure

1. Set to Run as administrator, close the existing PowerCLI sessions and open a new one.

2. Using the PS1 script, unregister the plugin.

3. Stop the vSphere web client service:
   VC Linux: `service vsphere-client stop`

4. Delete the contents of the plug-in folder.
   The vSphere web client (Virgo) plug-in folders are located at:

<table>
<thead>
<tr>
<th>vCenter</th>
<th>Operating system</th>
<th>Path to file</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.x</td>
<td>Windows</td>
<td>C:\ProgramData\VMware\vSphere Web Client\vc-packages\vsphere-client-serenity</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/var/lib/vmware/vsphere-client/vc-packages/vsphere-client-serenity/</td>
</tr>
<tr>
<td>6.x</td>
<td>Windows</td>
<td>C:\ProgramData\VMware\vCenterServercfg vsphere-client\vc-packages\vsphere-client-serenity</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/etc/vmware/vsphere-client/vc-packages/vsphere-client-serenity</td>
</tr>
</tbody>
</table>

5. Delete the `scaleio` folder or its contents.
   The `scaleio` folders are located at:

<table>
<thead>
<tr>
<th>vCenter</th>
<th>Operating system</th>
<th>Path to file</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.x</td>
<td>Windows</td>
<td>C:\Windows\System32\config\systemprofile\AppData\Roaming\VMware\scaleio</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/opt/.vmware/scaleio</td>
</tr>
<tr>
<td>6.x</td>
<td>Windows</td>
<td>C:\Users\vspherewebclientsvc\AppData\Roaming\VMware\scaleio</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/etc/vmware/vsphere-client/vc-packages/scaleio</td>
</tr>
</tbody>
</table>

6. Clean the Virgo logs folder.
   The Virgo log folders are located at:

<table>
<thead>
<tr>
<th>vCenter</th>
<th>Operating system</th>
<th>Path to file</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.x</td>
<td>Windows</td>
<td>C:\ProgramData\VMware\vSphere Web Client\serviceability\logs</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/var/log/vmware/vsphere-client/</td>
</tr>
<tr>
<td>6.x</td>
<td>Windows</td>
<td>C:\ProgramData\VMware\vCenterServer\logs \vsphere-client\logs</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td>/var/log/vmware/vsphere-client/logs</td>
</tr>
</tbody>
</table>
7. Start the vSphere web client service:
   VC Linux: `service vsphere-client start`

8. Clear your web browser's cache and cookies, or else open a different web browser.

9. Using the PS1 script, register the plugin via PowerCLI.

   **Note**
   Do not press ENTER at this point.

10. After you have logged in to the vSphere web client to complete the registration and you see the ScaleIO icon, press ENTER in the PowerCLI session.
    This stops the embedded Tomcat server.

11. If necessary, remove the SDC module parameters and VIB from the ESXs:
    a. Connect via SSH to each ESX.
    b. Run:

       ```
 ~ # esxcli system module parameters set -m scini -p ""
 ~ # esxcli software vib remove -n scaleio-sdc-esx5.5 / 6.0
       ```
    c. Reboot each ESX.

### Configuring ScaleIO devices in Linux LVM

To configure ScaleIO devices, perform the following:

**Procedure**

1. Edit the `/etc/lvm/lvm.conf` file by adding the following line:

   ```
 types = ["scini", 16]
   ```

2. If only ScaleIO scini devices are to be used, you can add the following filter:

   ```
 filter = ["a|/dev/scini*|", "r/.*/"]
   ```

3. Once configured, the `lvmdiskscan` command should yield results similar to the following:

   ```
 /dev/scinia [96.00 GiB] LVM physical volume
 /dev/scinib [320.00 GiB] LVM physical volume
 /dev/scinic1 [56.00 GiB]
 /dev/scinid [32.00 GiB]
 1 disk
 1 partition
 2 LVM physical volume whole disks
 0 LVM physical volumes
   ```

4. Continue with normal LVM steps.
Configuring session timeout parameters

When a user is authenticated by the system, all commands are performed with the user's respective role until a logout is performed, or until the session expires by reaching one of the following timeouts:

- Maximum session length (default: 8 hours)
- Session idle time (default: 10 minutes)

You can modify these parameters, by editing the MDM conf.txt file:

- Linux: /opt/emc/scaleio/mdm/cfg/conf.txt
- Windows: C:\Program Files\emc\scaleio\mdm\cfg\conf.txt

1. To configure maximum session length, edit the value of the user_session_hard_timeout_secs parameter. The minimum is 10 seconds, maximum 10 years, and default 8 hours.

2. To configure session idle time, edit the value of the user_session_timeout_secs parameter. The minimum is 10 seconds, maximum 3 months, default 10 minutes.

3. After changing the parameters, restart the MDM service (delete and create service) for the changes to take effect.

4. To ensure persistence after MDM restart, make these changes on every MDM.

Fixing keytool errors

Error during rpm installation command

Error message:

No keytool path was found. Please pass SIO_GW_KEYTOOL as an argument to the rpm installation command.

If a message similar to this is displayed after executing the rpm command to install the Gateway, add the location of the /bin/keytool file on your server to the command.

Example:

```
SIO_GW_KEYTOOL=/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/jre
rpm -U <gateway_installation_file_name>.rpm
```

Error during rpm upgrade command

Error message:

No keytool path was found. Set the environment variable SIO_GW_KEYTOOL

If a message similar to this is displayed after executing the rpm command to upgrade the Gateway, add the location of the /bin/keytool file on your server to the command.
Installing Java on SUSE 12 servers

Installation of Java is different in SLES-based distributions because SLES uses update-alternatives commands. For SUSE, we use a TGZ file in place of RPM.

To install Java on SUSE 12 servers:

**Procedure**

1. Untar the TGZ (for example, `jre-8u60-linux-x64.tar.gz`) to `/usr/java`.  
   This creates a directory of `/usr/java/jre1.8.0_60/`.  
2. Apply the std update-alternatives procedure:
   ```
 /usr/sbin/update-alternatives --install "/usr/bin/java" "java" "/usr/java/jre1.8.0_60/bin/java" 40
 /usr/sbin/update-alternatives --config java
 /usr/sbin/update-alternatives --install "/usr/bin/keytool" "keytool" "/usr/java/jre1.8.0_60/bin/keytool" 40
 /usr/sbin/update-alternatives --config keytool
   ```

SVM manual memory allocation

When using the plug-in for a clean deployment, SVM memory allocation is performed automatically. In the following cases, SVM memory allocation must be performed manually:

- Manual deployment on VMware.
- Extending an existing SVM with a new ScaleIO role/component, whether this is being done with the plug-in or manually.
  Workaround: Perform all the parts of step 1 and step 2 before extending the additional role/component on the SVM. Perform the steps on one SVM at a time.
- Changing the SDS performance profile, post deployment.
  Workaround: Perform all the parts of step 1 one SVM at a time.

**Procedure**

1. For SVMs that are SDS-only, perform the following:
   a. Move the SDS to maintenance mode (MM).
   b. Shut down the SVM.
   c. Increase SVM memory, according to the formula below.
   d. Power up the SVM.
   e. Exit MM.
2. For SVMs that are MDM (Master, Slave, or TB, may contain SDS, also):
a. Start with Slaves and TBs:
   a. Move the SDS to maintenance mode (MM).
   b. Shut down the SVM.
   c. Increase SVM memory, according to the formula below.
   d. Power up the SVM.
   e. Exit MM.

b. Proceed with the Master MDM:
   a. Switch ownership, so the Master MDM is now a Slave MDM.
   b. Move the SDS to maintenance mode (MM).
   c. Shut down the SVM.
   d. Increase SVM memory, according to the formula below.
   e. Power up the SVM.
   f. Exit MM.

The memory allocation formula:

<table>
<thead>
<tr>
<th>Component</th>
<th>Memory allocation rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base SVM</td>
<td>• 350 MB</td>
</tr>
<tr>
<td>MDM (Master/Slave)</td>
<td>• 470 MB + (500 KB * 8 TB of volume capacity) + (1.44 KB * number of volumes) + (4 KB * number of SDS devices)</td>
</tr>
<tr>
<td></td>
<td>• Maximum supported volumes: 256 K</td>
</tr>
<tr>
<td>Tie Breaker MDM</td>
<td>• 50 MB</td>
</tr>
<tr>
<td>SDS</td>
<td>• (Base) 536 MB + (RmCache Size) * 1.15 + (Storage capacity in TB) * 53 MB</td>
</tr>
<tr>
<td></td>
<td>• For SDS high performance profile, we add 195 MB.</td>
</tr>
<tr>
<td>SDC</td>
<td>• 132 KB + 23 MB * (number of MDMs) + 25 KB * (number of SDSs) + 1.5 KB * (number of volumes) + 16 B * (number of volume blocks) + 24 KB * (8 TB of volume capacity)</td>
</tr>
<tr>
<td></td>
<td>• Volume blocks: 1 GB storage = 8 volume blocks</td>
</tr>
<tr>
<td>RFcache</td>
<td>• 16 * (cache_size/page_size)</td>
</tr>
<tr>
<td></td>
<td>• Commonly-used sizes:</td>
</tr>
<tr>
<td>RFcache page size</td>
<td>RFcache memory requirement, if the cache device is 800 GB</td>
</tr>
<tr>
<td></td>
<td>RFcache memory requirement, if the cache device is 1.6 TB</td>
</tr>
<tr>
<td>64 K</td>
<td>200 MB</td>
</tr>
<tr>
<td>32 K</td>
<td>400 MB</td>
</tr>
<tr>
<td>16K</td>
<td>800 MB</td>
</tr>
<tr>
<td>8 K</td>
<td>1.6 GB</td>
</tr>
</tbody>
</table>
## Upgrading Java

Before changing the Java version of a node that is running the Gateway or AMS of ScaleIO v2.5 or later, you must prepare lockbox-related files.

The lockbox in ScaleIO v2.5 saves files in the Java folder of the ScaleIO Gateway and the AMS. These files need to be saved before any Java version update, then pasted back into the folder.

**Procedure**

1. From the `jre\lib\ext` (or `jre/lib/ext` for Windows) Java folder, copy these files to a different folder:
   - `commons-lang3-3.6.jar`
   - `cryptoj-6.2.3.jar`

2. Update the Java version.

3. Paste these files back to the folder from where you copied them.

## Mounting ScaleIO

The exposed ScaleIO volumes are connected to the servers via the network. To configure mounting options of ScaleIO devices, follow the instructions for your operating system.

Use persistent device names, described in full in [Associating ScaleIO volumes with physical disks](#) on page 224.

To mount ScaleIO:

**Procedure**

1. Determine the `/dev/disk/by-id` correlation to `/dev/sciniaX`:

   ```bash
 ls -l /dev/disk/by-id/ | grep scini
   ```

   Output similar to the following appears:

   ```bash
 lrwxrwxrwx 1 root root 12 Mar 2 05:35 emc-vol-7ec27ef55b8f2108-85a0f0330000000a -> ../../scinia
 lrwxrwxrwx 1 root root 12 Mar 2 05:35 emc-vol-7ec27ef55b8f2108-85a0f03200000009 -> ../../scinib
 lrwxrwxrwx 1 root root 12 Mar 2 05:35 emc-vol-7ec27ef55b8f2108-85a0f02c00000003 -> ../../scinic
   ```

2. Run the mount command:

   ```bash
 mount /dev/disk/by-id/<EMC-vol-id>
   ```
Example:

```
mount /dev/disk/by-id/emc-vol-7ec27ef55b8f2108-85a0f0330000000a /mnt_scinia
```

3. To make the mount command persistent, edit the `/etc/fstab` file according to the instructions for your operating system:

   - **RHEL 6.x:**
     a. In `/etc/fstab`, use a text editor to add the ScaleIO mount lines:

     ```
 /dev/disk/by-id/emc-vol-7ec27ef55b8f2108-85a0f0330000000a /mnt_scinia ext4 defaults 0 0
     ```

     b. In `/etc/rc.local`, use a text editor to add the mount commands:

     ```
 mount /mnt_scinia
     ```

   - **RHEL 7.x:**
     In `/etc/fstab`, use a text editor to add `_netdev` to the ScaleIO mount lines.

     ```
 /dev/disk/by-id/emc-vol-7ec27ef55b8f2108-85a0f0330000000a /mnt_scinia ext4 defaults,_netdev 0 0
     ```

     Ensure that you comply with the `netdev` and syntax rules for your file system, as described in the `man` page.

   - **SLES:**
     In `/etc/fstab`, use a text editor to add `nofail` to the ScaleIO Ready Node mount lines.

     ```
 /dev/disk/by-id/emc-vol-7ec27ef55b8f2108-85a0f0330000000a /mnt_scinia ext3 nofail 0 0
     ```

     Ensure that you comply with the `nofail` and syntax rules for your file system, as described in the `man` page.

---

### The ScaleIO Gateway web server isn’t responding

**The ScaleIO Gateway (REST service, Installation Manager) may be disabled:**

The ScaleIO Gateway seems to be locked or disabled, and returns the HTTP status code 401 or 403.

**Solution**

- Ensure that the Gateway is enabled, as described in the documentation.
In the gatewayUser.properties file, ensure that the gateway-admin.password property has a non-blank password. If the password is blank, the gateway has been locked.

The following table shows the location of the gatewayUser.properties file:

<table>
<thead>
<tr>
<th>Gateway installed on</th>
<th>Location of gatewayUser.properties file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows, 64-bit</td>
<td>C:\Program Files\EMC\ScaleIO\Gateway\webapps\ROOT\WEB-INF\classes\</td>
</tr>
<tr>
<td>Linux</td>
<td>/opt/emc/scaleio/gateway/webapps/ROOT/WEB-INF/classes</td>
</tr>
</tbody>
</table>

To reset the Scaleio-Gateway password, perform the following steps:

**Procedure**

1. Use SioGWTool to reset the password by typing the following command:

   ```
 SioGWTool --reset_password --password <new_scaleio-gateway_password> --config_file <path_to_file_gatewayUser.properties>
   ```

   **Note**
   
   The path to SioGWTool is:
   
   Linux: /opt/emc/scaleio/gateway/bin/SioGWTool.sh
   
   Windows: C:\Program Files\EMC\ScaleIO\Gateway\bin\SioGWTool.bat

2. Restart the scaleio-gateway service

**The ScaleIO Gateway web server isn't responsive and the following error appears in the catalina log file:**

- **Windows:**
  
  C:\Program Files\EMC\ScaleIO\Gateway\logs\catalina.<date>.log

- **Linux:**
  
  /opt/emc/scaleio/gateway/logs

   
   java.net.BindException: Address already in use: bind

**Solution**

Perform one of the following:

**Procedure**

1. Find the service/daemon that is currently occupying that port and stop it:

   - **Windows**
     
     Run: netstat -anb
Linux

Run: `netstat -alp`

On Windows, one of the common applications that occupies this port is the VMware workstation, which uses this port for the shared VM feature. You can configure VMware workstation to use a different port via the Settings dialog, or you can disable the shared VM feature.

Once the port is free, restart the scaleio-gateway service:

- Windows
  Restart the EMC ScaleIO Gateway service.
- Linux
  Type the command `service scaleio-gateway restart`

2. Change the ScaleIO Gateway web server to run on a different port, as described in “Changing default ports”.

   After doing so, restart the ScaleIO Gateway service/daemon, as described above. Access the Gateway with the new port. For example: https://<host>:<port>

Upgrading the Gateway when a custom certificate is used

If a custom security certificate is used on the ScaleIO Gateway (Windows and Linux environments), you must save a copy of the certificate (*.keystore file) and the `catalina.properties` file before you upgrade the gateway. After the upgrade is complete, you must copy these files back to their original location.

The default file locations, per operating system, are:

**Linux:**

```
/opt/emc(scaleio)/gateway/conf/catalina.properties
/opt/emc(scaleio)/gateway/conf/certificates/.keystore
```

**Windows (64 bit):**

```
C:\Program Files\EMC\ScaleIO\Gateway\conf\catalina.properties
C:\Program Files\EMC\ScaleIO\Gateway\conf\certificates\.keystore
```

Uploading a new OVA

If you have already used the OVA to create a template, you cannot create another template with the same name in the same datacenter.

Either remove the original template first, or use the `ScaleIOPluginSetup-2.5-<build>.X.ps1` script, option #3, to assign a different name to the new template.

You can also upload the OVA manually using the VMware OVA upload tools. Configure the networks manually, after deployment or during the wizard menus. For more information, see the VMware user guides.
Using the same data network for different NICs

This configuration is supported, but it could reduce efficiency of outgoing communication and deny you the benefits of high availability of the multiple networks.

What to do when the default self-signed certificate expires

If the default self-signed security certificate is used on the ScaleIO Gateway, it expires after approximately one year. When you upgrade the gateway, the self-signed certificate is automatically replaced with a new one. If your self-signed security certificate expires, you can create a new one using the Java keytool utility.

Add another IP address subnet to an MDM cluster

Add an IP network to an existing MDM cluster.

Before you begin

This topic explains how to add another IP address subnet for use by the MDM cluster. This procedure addresses scenarios where the MDM cluster uses a single network, or when an existing network needs to be replaced by a different one.

Note

This procedure describes an example for a 3-node cluster, however, the procedure for a 5-node cluster is similar.

Procedure

1. Query the system to get the current cluster state/health:

   `scli --query_cluster`

   Cluster status is returned, where you can identify the Master, the Slave, and the Tie Breaker.

2. Switch to single cluster mode:

   `scli --switch_cluster_mode --cluster_mode 1_node --remove_slave_mdm_id <mdm_slave_id> --remove_tb_id <tb_id>`

3. Remove the standby MDM:

   `scli --remove_standby_mdm --remove_mdm_id <mdm_slave_id>`

4. Remove the Tie Breaker:

   `scli --remove_standby_mdm --remove_mdm_id <tb_id>`
5. Add the MDM as standby with its IP addresses (including the additional IP addresses):

```bash
scli --add_standby_mdm --new_mdm_ip ip_1<,ip_2,...> --mdm_role manager --new_mdm_management_ip ip_1<,ip_2,...> --allow_asymmetric_ips --force_clean
```

For example:

```bash
scli --add_standby_mdm --new_mdm_ip 10.89.9.6,10.89.11.6 --mdm_role manager --new_mdm_management_ip 10.89.9.6,10.89.11.6 --allow_asymmetric_ips --force_clean
```

6. Add the Tie Breaker as standby with its IP addresses (including the additional IP addresses):

```bash
scli --add_standby_mdm --new_mdm_ip ip_1<,ip_2,...> --mdm_role tb --new_mdm_management_ip ip_1<,ip_2,...> --allow_asymmetric_ips --force_clean
```

7. Switch cluster operation back to a 3-node cluster:

```bash
scli --switch_cluster_mode --cluster_mode 3_node --add_slave_mdm_id <slave_id> --add_tb_id <tb_id>
```

For example:

```bash
scli --switch_cluster_mode --cluster_mode 3_node --add_slave_mdm_id 0x4520631c7262bbf1 --add_tb_id 0x3cde0ef516f61162
```

8. Query the system to get the current cluster state/health.

```bash
scli --query_cluster
```

Cluster status is returned, where you can check that the cluster is configured and operating as expected.

9. Switch MDM ownership to verify cluster functionality:

```bash
scli --switch_mdm_ownership --new_master_mdm_id <new_master_mdm_id>
```

For example:

```bash
scli --switch_mdm_ownership --new_master_mdm_id 0x4520631c7262bbf1
```

10. Query the system to get the current cluster state/health.

```bash
scli --query_cluster
```
Cluster status is returned, where you can check that the cluster is operating as expected.

11. Add IP addresses for the Master MDM (presently Slave MDM) by following steps 2, 3, 5, 7, and 8.

12. Optional: Switch MDM ownership back to the original MDM:

```
scli --switch_mdm_ownership --new_master_mdm_id MDM_ID
```

---

### Shutdown or restart a node gracefully

When performing tasks on a node that require it to be shutdown or restarted, do so gracefully.

Operating system upgrades and patches, as well as other maintenance activities, like part replacement, require shutting down or rebooting a node.

### Gracefully shut down or reboot a node

Prepare the server for a patching or maintenance operation (such as a part replacement) by entering the node into maintenance mode and shutting down/rebooting the node in a graceful fashion.

**Before you begin**

Ensure that you have admin rights for accessing the ScaleIO GUI. If necessary, the customer can give you the credentials.

**Procedure**

1. When shutting down/rebooting a node that is a Master MDM, it is recommended that you manually switch MDM ownership to a different node:

   a. From the ScaleIO CLI (SCLI), run:

   ```
scli --query_cluster
```

**Note**

The SCLI is installed as part of the MDM component and can be found in the following path:

- **ESXi (SVM)** — `scli`
- **Linux** — `scli`
- **Windows** — `C:\Program Files\emc\scaleio\MDM\bin`

b. If the node’s IP addresses are included in the `--query_cluster` output, the faulty node has a role of either MDM or TieBreaker (TB), in addition to its SDS role.

If the node’s IP address is located in the Master MDM role, a switch-over action is required.
c. Switch MDM ownership to a different node:

```
scli -switch_mdm_ownership (-new_master_mdm_id <ID> | --new_master_mdm_ip <IP> | --new_master_mdm_name <NAME>)
```

The node remains in the cluster. The cluster will be in degraded mode after it is powered off, until the faulty component or patch operation in the node is fixed and the node is powered back on.

d. Verify that the cluster status shows that the node is not the Master MDM anymore:

```
scli --query_cluster
```

Output similar to the following should appear, with the relevant node configuration and IP addresses for your deployment:

```
Cluster:
 Mode: 5_node, State: Normal, Active: 5/5, Replicas: 3/3
 Virtual IP Addresses: 9.20.10.100, 9.20.110.100
Master MDM:
 ID: 0x775afb2a65ef1f02
 IP Addresses: 10.136.215.239, Port: 9011, Virtual IP interfaces: sio_d_1, sio_d_2
 Version: 2.0.13000
Slave MDMs:
 ID: 0x5b2e9f273b7af9b0
 IP Addresses: 9.20.10.105, 9.20.110.105, Management IP
 IP Addresses: 10.136.215.223, Port: 9011, Virtual IP interfaces: sio_d_1, sio_d_2
 Status: Normal, Version: 2.0.13000
 ID: 0x5828f65b15e778f1
 IP Addresses: 9.20.10.102, 9.20.110.102, Management IP
 IP Addresses: 10.136.215.232, Port: 9011, Virtual IP interfaces: sio_d_1, sio_d_2
 Status: Normal, Version: 2.0.13000
Tie-Breakers:
 ID: 0x6618e0b804644ca4
 IP Addresses: 9.20.10.101, 9.20.110.101, Port: 9011
 Status: Normal, Version: 2.0.13000
 ID: 0x12534ccb3d28fee3
 IP Addresses: 9.20.10.103, 9.20.110.103, Port: 9011
 Status: Normal, Version: 2.0.13000

In the example output, the Master MDM IP addresses are:

```
```

The Slave IP addresses are:

```
IP Addresses: 9.20.10.102, 9.20.110.102, Management IP Addresses: 10.136.215.232
```

2. Move all applications to a different node:

- On an ESXi node that is not a cluster member, and that is not configured for HA and DRS, migrate the VMs to another ESXi.
• On a Linux or a Windows node, migrate the applications (or the VMs, if the node is running a hypervisor).

Note
In non-hypervisor environments, ask the customer for assistance in moving applications from the node.

3. Log in to the ScaleIO GUI as an admin user.
4. In ScaleIO **Backend** view, select **By SDSs** table view.
5. Right-click the SDS node you are shutting down/rebooting, and select **Enter Maintenance Mode**.
6. In the **Enter maintenance mode** window, wait for rebalance operations to finish, ensure that there are no errors, and then click **OK**.
7. When the operation finishes successfully, click **Close**.
The node's IP address appears with a wrench next to it.

8. On an ESXi node:
 a. Log in to the vCenter via the vSphere Web Client, and locate the relevant ESXi IP address.
 b. Select the SVM, and from the **Actions > Power** menu, select **Shut Down Guest OS**.
 c. When the SVM is off, right-click the ESXi node and select **Enter Maintenance Mode**.
9. If you are applying a patch:
 a. Run the patch.
 b. Reboot the node, if necessary.
10. For part replacement or to shut down/reboot a node:
 a. Obtain customer permission to shut down the node.
11. Gracefully shut down/reboot the node using the relevant API for the operating system.

Note
On a Linux or Windows node, no checks are required for a graceful shutdown after entering the SDS into maintenance mode.

Return the node to operation

To return the node to operation, perform the following steps:

Procedure

1. Power on the node, or if rebooting, wait for the node to start booting.
 The OS will boot up for Windows and Linux operating systems. For Windows and Linux nodes, all ScaleIO processes will start up automatically.
2. For an ESXi node, perform the following:
 a. From the vSphere Web Client, ensure that the node is displayed as on and connected in both **Hosts** and **Clusters** view.
b. Right-click the node and select **Exit Maintenance Mode**.

c. Expand the server and select the ScaleIO VM. If the SVM does not power on automatically, power it on manually.

3. After the node is up, perform the following checks in the ScaleIO GUI:

 a. In the Monitor > Alerts view, make sure that no SDS disconnect message appears.

 b. If the node was an MDM cluster member, in the Dashboard Management tile, verify that the cluster is no longer degraded.

 c. In the Frontend tab > SDCs view, check the SDC to which the node IP is assigned, and make sure that it is connected.

4. In the ScaleIO GUI **Backend** view, in By SDSs table view, right-click the SDS and select **Exit Maintenance Mode**.

5. In the **Action** window, click **OK**.

6. Wait for the rebalance operations to finish.

 The node is now operational and application I/O can be started on the node. For ESXi nodes, you can migrate VMs to the node.

Deployment of ScaleIO using a non-root user

ScaleIO can be deployed or extended in Linux environments using a non-root sudo user in non-interactive mode.

Sudo is a program that allows a user to run or install a program as the root user. A sudo user can be created to deploy ScaleIO.

In order to successfully deploy or extend ScaleIO with a non-root user, the non-root user must meet the following conditions:

- The username included in the CSV file must already exist.
- The non-root user must be a sudo user.
- The non-root user must be in non-interactive mode.
- The requirement for TTY must be disabled.

In the CSV file used for deployment, you must indicate that you are intending to use a sudo non-root username by appending the string "(sudo)" to the user name in the Username field. For example, if you are using a non-root user with the username "non_root", enter the string "non_root(sudo)" in the username field of the CSV file.

Configure a non-root non-interactive sudo user

In Linux, you can deploy or extend ScaleIO with a non-root user. You must configure a non-root sudo user in non-interactive mode.

Before you begin

The following procedure details one method for configuring a non-root non-interactive sudo user. Perform the commands from the operating system console of where you want the gateway to deploy the ScaleIO system.

Procedure

1. Create a user group named "admin".

   ```bash
   groupadd admin
   ```
2. Create a user named "non_root" and add it to the admin group.

```bash
useradd -G admin non_root
```

3. Change the password of the non_root user.

```bash
passwd non_root
```

When prompted, enter the new password and then confirm it by entering it again.

4. Open the sudoers `/etc/sudoers` file for editing.

```bash
visudo
```

5. Search the sudoers file for "## Same thing without a password".

```bash
:s/## Same thing without a password
```

6. In the line below the search result, add the text "%admin ALL=(ALL) NOPASSWD: ALL" and then exit the vi editor.

Type the following command to exit: `:q`

7. Create a hidden directory in the non_root user's home directory to store the SSH configuration.

```bash
mkdir /home/non_root/.ssh
```

8. Copy the SSH configuration from the root user to the non_root user's directory.

```bash
cp -rf /root/.ssh/* /home/non_root/.ssh/
```

9. Open the sudoers `/etc/sudoers` file for editing.

```bash
visudo
```

10. Search the sudoers file for "Defaults requiretty" and replace it with "Defaults ! requiretty".
Common Tasks
CHAPTER 14

System events

The following topics describe ScaleIO system events and alerts.

- System events overview ... 250
- Event format ...250
- Viewing events ...251
- Event list ...254
System events overview

This appendix describes event messages that can be generated by the ScaleIO system.

An event message is generated as a response to changes that have occurred while the system is running. Event messages to notify you of the changes in case your intervention is needed. Each event message is associated with a severity level. The severity indicates the risk (if any) to the system, in relation to the changes that generated the event message. The severity levels are as follows:

- **Info**
 Informs you of events that one should be aware of, but that do not put the system at risk (No Urgency)

 Example: CLI_COMMAND_RECEIVED

- **Warning**
 Indicates a failure that may result from an acceptable condition (e.g. user error), but can also indicate a possible failure.

 Example: SDC_DISCONNECTED.

 If the disconnection is planned, or self-recovered, then all is OK. Otherwise, this might require user intervention.

- **Error**
 An error alarm was raised by the system. This error requires your attention. The system is stable, but could be degraded.

 Example: MDM_DATA_DEGRADED

 The system is operational but some data is not protected. The system is recovering, but hardware replacement might be required.

- **Critical**
 A major error alarm was raised by system. The system requires immediate attention.

 Example: MDM_DATA_FAILED

 Some data is unavailable.

Event entries are documented as follows:

- **Name**
 The name associated with the event

- **Message**
 The message that will appear

- **Severity**
 The severity level

- **Description**
 A description of the reasons that triggered the event notification

- **Action**
 Possible actions that can resolve the reported event (if relevant)

Event format

All event messages received are in a parsable structured format, containing the following fields:
ID: a sequential number attached to all events
Date: the local time set in the server
Format: YYYY-MM-DD hh:mm:ss.ssssss
Name: the unique name of the event
Severity: one of the predefined severity levels
Message: message describing the event. Some event notification message verbosity may be expanded by using the full switch (see “Viewing events locally”).

The following is an example of a possible event notification:

```
139  2013-07-22 17:21:11.694571 CLI_COMMAND_RECEIVED
INFO     Command MAP_VOL_TO_SCSI_INITIATOR Received
```

This event has the option of extended verbosity. When requested, the event notification will be displayed as follows:

```
139  2013-07-22 17:21:11.694571 CLI_COMMAND_RECEIVED
INFO     Command MAP_VOL_TO_SCSI_INITIATOR Received Vol
Name: snap_raw; iSCSI Initiator Name: ini-21
bAllocateLunNum: 1 lunNum: 0
```

The following is a breakdown of the event according to the fields in the event record (as described above):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>139</td>
</tr>
<tr>
<td>Date</td>
<td>2013-07-22 17:21:11.694571</td>
</tr>
<tr>
<td>Name</td>
<td>CLI_COMMAND_RECEIVED</td>
</tr>
<tr>
<td>Severity</td>
<td>INFO</td>
</tr>
<tr>
<td>Message</td>
<td>Command MAP_VOL_TO_SCSI_INITIATOR Received Vol Name: snap_raw; iSCSI Initiator Name: ini-21 bAllocateLunNum: 1 lunNum: 0</td>
</tr>
<tr>
<td>Extended</td>
<td>Command MAP_VOL_TO_SCSI_INITIATOR Received Vol Name: snap_raw; iSCSI Initiator Name: ini-21 bAllocateLunNum: 1 lunNum: 0</td>
</tr>
</tbody>
</table>

Viewing events

You can view events in the following ways:

- on a local server
- via Syslog
- via email

To configure events via email, see the *EMC Secure Remote Services Installation and Operations Guide*.

Viewing events locally

Events can be viewed by running the following command, and by using switches to filter the data.
Command:

showevents.py

Syntax

/opt/emc/scaleio/mdm/bin/showevents.py [Options]

Actual command syntax is operating-system dependent. For more information, see CLI basics on page 96.

Description/Notes
Displays events, which can be filtered by optional switches.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options:</td>
<td></td>
</tr>
<tr>
<td>--min_severity <SEVERITY></td>
<td>Displays events with at least the specified minimum severity</td>
</tr>
<tr>
<td>--severity <SEVERITY></td>
<td>Displays events with the specified severity</td>
</tr>
<tr>
<td>--from_id <ID></td>
<td>Displays all events starting from the given ID</td>
</tr>
<tr>
<td>--to_id <ID></td>
<td>Displays all events ending at the given ID</td>
</tr>
<tr>
<td>--from_date <ID></td>
<td>Displays all events starting from the given date</td>
</tr>
<tr>
<td>--to_date <ID></td>
<td>Displays all events ending at the given date</td>
</tr>
<tr>
<td>--grep <TEXT></td>
<td>Displays events containing the specified text</td>
</tr>
<tr>
<td>--full</td>
<td>Extends message verbosity</td>
</tr>
</tbody>
</table>

Example

/opt/emc/scaleio/mdm/bin/showevents.py --severity ERROR

Viewing events in Syslog

The MDM syslog service can send ScaleIO events, via TCP/IP, to RFC 6587-compliant remote (or local) Syslog servers. Messages are sent with facility local0, by default.

Once the syslog service is started, all events will be sent until the service is stopped. This section describes how to use the CLI to start, stop, and configure the facility field of the syslog events.

Start posting events to remote syslog servers

Command:

start_remote_syslog
Syntax

```
scli --start_remote_syslog --remote_syslog_server_ip <IP> [--remote_syslog_server_port <PORT>] [--syslog_facility <FACILITY>] [--attach_event_code]
```

Actual command syntax is operating-system dependent. For more information, see “CLI basics”.

Description/Notes
Starts posting events to one or more remote syslog servers.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--remote_syslog_server_ip</td>
<td>A comma-separated list of syslog server IP addresses (maximum of two servers)</td>
</tr>
<tr>
<td>--remote_syslog_server_port</td>
<td>The syslog server port (default 1468)</td>
</tr>
<tr>
<td>--syslog_facility</td>
<td>Controls the facility field of the event (legal values 0—23; default 16)</td>
</tr>
<tr>
<td>--attach_event_code</td>
<td>Add the posted event code to the event message (disabled, by default)</td>
</tr>
</tbody>
</table>

Example

```
scli --start_remote_syslog --remote_syslog_server_ip 192.168.1.10 --remote_syslog_server_port 1500
```

Stop posting events to remote syslog servers

Command:

```
stop_remote_syslog
```

Syntax

```
scli --stop_remote_syslog --remote_syslog_server_ip <IP>
```

Actual command syntax is operating-system dependent. For more information, see “CLI basics”.

Description/Notes
Stops posting events to remote syslog servers.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--remote_syslog_server_ip</td>
<td>A comma-separated list of syslog servers IP addresses</td>
</tr>
</tbody>
</table>
Example

```
scli --stop_remote_syslog --remote_syslog_server_ip 192.168.1.10,192.168.1.20
```

Configure the syslog events facility field

Command: `set_syslog_facility`

Syntax

```
scli --set_syslog_facility --remote_syslog_server_ip <IP> --syslog_facility <FACILITY>
```

Actual command syntax is operating-system dependent. For more information, see “CLI basics”.

Description/Notes
Configures the facility field of the syslog events.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--remote_syslog_server_ip <IP></td>
<td>A comma-separated list of syslog server IP addresses</td>
</tr>
<tr>
<td>--syslog_facility <FACILITY></td>
<td>Controls the facility field of the event (legal values 0—23; default 16)</td>
</tr>
</tbody>
</table>

Example

```
scli --set_syslog_facility --remote_syslog_server_ip 192.168.1.10,192.168.1.20 --syslog_facility 20
```

Event list

This section lists all ScaleIO events, grouped by the following categories:

- Authentication
- CLI commands
- License and installation
- MDM
- SDC
- SDS
- Rebuild

Authentication
Authentication Failed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>AUTHENTICATION_FAILED</td>
</tr>
<tr>
<td>Message</td>
<td>Authentication failed for user U</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>User entered the wrong password</td>
</tr>
<tr>
<td>Action</td>
<td>If you see this event multiple times, someone may be trying to gain unauthorized access to the system.</td>
</tr>
</tbody>
</table>

CLI commands

CLI Command Received

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CLI_COMMAND_RECEIVED</td>
</tr>
<tr>
<td>Message</td>
<td>Command X Received</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>CLI command X was entered by a user</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>

CLI Command Succeeded

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CLI_COMMAND_SUCCEEDED</td>
</tr>
<tr>
<td>Message</td>
<td>Command X ended successfully</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>CLI command X was executed successfully</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>

CLI Command Failed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>CLI_COMMAND_FAILED</td>
</tr>
<tr>
<td>Message</td>
<td>Command X failed with error E</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
</tbody>
</table>
Snapshot volumes could not be found, by ID

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td><code>SNAPSHOT_VOLUMES_FAILED_BY_ID</code></td>
</tr>
<tr>
<td>Message</td>
<td>Could not snapshot volumes, because a volume ID was not found. ID: "MOS_OBJID__FORMAT".</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>This message is posted if a snapshot_volume command contains an invalid volume ID (out of many). The CLI will only get an error code, but in the event, you can see which volume ID is invalid.</td>
</tr>
<tr>
<td>Action</td>
<td>Verify the parameters entered for the snapshot_volume command</td>
</tr>
</tbody>
</table>

Snapshot volumes could not be found, by name

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td><code>SNAPSHOT_VOLUMES_FAILED_BY_NAME</code></td>
</tr>
<tr>
<td>Message</td>
<td>Could not snapshot volumes, because a volume was not found: Name: %s.</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>This message is posted if a snapshot_volume command contains an invalid volume name (out of many). The CLI will only get an error code, but in the event, you can see which volume name is invalid.</td>
</tr>
<tr>
<td>Action</td>
<td>Verify the parameters entered for the snapshot_volume command</td>
</tr>
</tbody>
</table>

License and installation

System events
License Expiration Warning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LICENSE_EXPIRATION_WARNING</td>
</tr>
<tr>
<td>Message</td>
<td>License will expire in X days</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>System license will expire in 30 days or less</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support for license renewal, and then reinstall.</td>
</tr>
</tbody>
</table>

License Expiration Error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LICENSE_EXPIRATION_ERROR</td>
</tr>
<tr>
<td>Message</td>
<td>License will expire in X days</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>System license will expire in 7 days or less</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support for license renewal. If you have already renewed your license, install it.</td>
</tr>
</tbody>
</table>

License Expiration Critical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LICENSE_EXPIRATION_CRITICAL</td>
</tr>
<tr>
<td>Message</td>
<td>License will expire in X days</td>
</tr>
<tr>
<td>Severity</td>
<td>Critical</td>
</tr>
<tr>
<td>Description</td>
<td>System license will expire in 2 days or less</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support for license renewal. If you have already renewed your license, install it.</td>
</tr>
</tbody>
</table>

License Expired

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LICENSE_EXPIRED</td>
</tr>
<tr>
<td>Message</td>
<td>License has expired</td>
</tr>
<tr>
<td>Severity</td>
<td>Critical</td>
</tr>
</tbody>
</table>
System events

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The system’s license has expired</td>
</tr>
<tr>
<td>Action</td>
<td>To resume operational mode, contact EMC Support for license renewal. If you have already renewed your license, install it.</td>
</tr>
</tbody>
</table>

Upgrade has started

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UPGRADE_STARTED</td>
</tr>
<tr>
<td>Message</td>
<td>Upgrade to version %s has started.</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>An upgrade procedure has been initiated</td>
</tr>
<tr>
<td>Action</td>
<td>Not needed</td>
</tr>
</tbody>
</table>

Upgrade has finished

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UPGRADE_FINISHED</td>
</tr>
<tr>
<td>Message</td>
<td>Upgrade completed successfully.</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>An upgrade procedure completed successfully</td>
</tr>
<tr>
<td>Action</td>
<td>Not needed</td>
</tr>
</tbody>
</table>

Upgrade has failed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UPGRADE FAILED</td>
</tr>
<tr>
<td>Message</td>
<td>Upgrade was not successful. Reason: %s</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>An upgrade procedure was not able to complete</td>
</tr>
<tr>
<td>Action</td>
<td>Fix the error and retry the upgrade</td>
</tr>
</tbody>
</table>

MDM
MDM Started

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MDM_STARTED</td>
</tr>
<tr>
<td>Message</td>
<td>MDM Process started</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>MDM process has started running</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>

MDM Data Degraded

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MDM_DATA_DEGRADED</td>
</tr>
<tr>
<td>Message</td>
<td>Some of the Storage Pool data is now in Degraded state</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Some of the Storage Pool data is in Degraded state. This data is not protected against another failure.</td>
</tr>
<tr>
<td>Action</td>
<td>The system is rebuilding the Degraded data to return to Normal (protected) state. Check if any hardware is malfunctioning and requires replacement.</td>
</tr>
</tbody>
</table>

MDM Data Failed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MDM_DATA_FAILED</td>
</tr>
<tr>
<td>Message</td>
<td>Some Storage Pool data is now unavailable</td>
</tr>
<tr>
<td>Severity</td>
<td>Critical</td>
</tr>
<tr>
<td>Description</td>
<td>Multiple failures have occurred. Some Storage Pool data is now unavailable. This data cannot be accessed.</td>
</tr>
<tr>
<td>Action</td>
<td>Locate and fix the failed hardware. If the problem is not resolved, contact EMC Support.</td>
</tr>
</tbody>
</table>
MDM Data Normal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>MDM_DATA_NORMAL</td>
</tr>
<tr>
<td>Message</td>
<td>All of the Storage Pool data has returned to Normal state</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>All Storage Pool data previously in Degraded or Failed state has returned back to Normal state. User data is fully accessible and protected.</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>

SDC

New SDC Connected

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NEW_SDC_CONNECTED</td>
</tr>
<tr>
<td>Message</td>
<td>New SDC (IP: X; ID: Y; GUID: Z) connected</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>A new SDC (IP: X; ID: Y; GUID: Z) has connected to the MDM</td>
</tr>
<tr>
<td>Action</td>
<td>A new SDC has just connected to the MDM. Validate that this is a valid SDC.</td>
</tr>
</tbody>
</table>

SDC Connected

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDC_CONNECTED</td>
</tr>
<tr>
<td>Message</td>
<td>SDC (IP: X; ID: Y; GUID: Z) reconnected</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>An existing SDC (IP: X; ID: Y; GUID: Z) has reconnected to the MDM</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>
SDC Disconnected

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDC_DISCONNECTED</td>
</tr>
<tr>
<td>Message</td>
<td>SDC (IP: X; ID: Y; GUID: Z) disconnected</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>SDC (IP: X; ID: Y; GUID: Z) has disconnected from the MDM.</td>
</tr>
<tr>
<td>Action</td>
<td>Make sure it is expected otherwise this might be a hardware malfunction</td>
</tr>
</tbody>
</table>

SDS

SDS Disconnected

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_DISCONNECTED</td>
</tr>
<tr>
<td>Message</td>
<td>SDS X (IP:Y; ID: Z) disconnected</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>SDS X (IP: Y; ID Z) has disconnected from the MDM</td>
</tr>
<tr>
<td>Action</td>
<td>Make sure that this is an expected event, because otherwise this might be caused by a hardware malfunction</td>
</tr>
</tbody>
</table>

SDS Reconnected

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_RECONNECTED</td>
</tr>
<tr>
<td>Message</td>
<td>SDS X (IP:Y; ID: Z) reconnected</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>SDS X (IP: Y; ID Z) has reconnected to the MDM. If this event appears multiple times subsequently for the same SDS (and not directly after SDS_DISCONNECTED), it can indicate a bad network connection.</td>
</tr>
<tr>
<td>Action:</td>
<td>Check network connections.</td>
</tr>
</tbody>
</table>
System events

SDS Remove Done

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_REMOVE_DONE</td>
</tr>
<tr>
<td>Message</td>
<td>SDS X (IP:Y; ID: Z) was removed successfully</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>The asynchronous process of removing an SDS has completed.</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>

Open SDS Device Failed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>OPEN_SDS_DEVICE_FAILED</td>
</tr>
<tr>
<td>Message</td>
<td>Failed to open a device D on SDS X (IP:Y; ID: Z) with error message E</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Failed to open storage device D on SDS X (IP:Y; ID: Z) with error message E</td>
</tr>
<tr>
<td>Action</td>
<td>Check the cause of the error, and identify if it's a human error or a system malfunction. Check hardware if needed.</td>
</tr>
</tbody>
</table>

SDS Device Error Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_DEV_ERROR_REPORT</td>
</tr>
<tr>
<td>Message</td>
<td>Device error reported device D on SDS X (IP:Y; ID: Z)</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Error reported on storage device D on SDS X (IP:Y; ID: Z)</td>
</tr>
<tr>
<td>Action</td>
<td>Check the storage device on the server</td>
</tr>
</tbody>
</table>

Device capacity is high

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DEV_CAPACITY_USAGE_HIGH</td>
</tr>
<tr>
<td>Message</td>
<td>Capacity usage on %s is HIGH."</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>Capacity is high, due to capacity used by snapshots/thin volumes</td>
</tr>
<tr>
<td>Action</td>
<td>Remove unnecessary snapshots or add more storage</td>
</tr>
</tbody>
</table>

Device capacity is critical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DEV_CAPACITY_USAGE_CRITICAL</td>
</tr>
<tr>
<td>Message</td>
<td>Capacity usage on %s is CRITICAL.</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Capacity is critical, due to capacity used by snapshots/thin volumes</td>
</tr>
<tr>
<td>Action</td>
<td>Remove unnecessary snapshots or add more storage</td>
</tr>
</tbody>
</table>

Device capacity has returned to normal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>DEV_CAPACITY_USAGE_NORMAL</td>
</tr>
<tr>
<td>Message</td>
<td>Capacity usage on %s is normal.</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>Capacity usage is back to normal</td>
</tr>
<tr>
<td>Action</td>
<td>Not needed</td>
</tr>
</tbody>
</table>

SDS configuration has become invalid

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_CONFIG_INVALID</td>
</tr>
<tr>
<td>Message</td>
<td>CLI_TARGET_NAME_CAP" %s (ID "MOS_OBJID__FORMAT ") configuration is invalid.</td>
</tr>
<tr>
<td>Severity</td>
<td>Critical</td>
</tr>
<tr>
<td>Description</td>
<td>The SDS cannot access its configuration files.</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support</td>
</tr>
</tbody>
</table>
SDS disk errors were fixed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SDS_FIX_DISK_ERROR</td>
</tr>
<tr>
<td>Message</td>
<td>CLI_TARGET_NAME_CAP" %s (ID "MOS_OBJID__FORMAT ") device %s fixed %d disk errors via reads.</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
<tr>
<td>Description</td>
<td>There were read errors on this device that were fixed by reading the data from secondary and re-writing it. This may be a sign of impending device hardware malfunction.</td>
</tr>
<tr>
<td>Action</td>
<td>Check for hardware malfunction</td>
</tr>
</tbody>
</table>

Background device scanner comparison error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SCANNER_COMPARE_REPORT</td>
</tr>
<tr>
<td>Message</td>
<td>Background device scanner on device ID 2301536800030001 reported compare error (Device Path: <device path>, SDS: <SDS name and ID>, Peer Device Path: <peer device path>, Peer SDS: <peer SDS name and ID>, Volume name: <volume name>, Volume offset: <volume offset>)</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Background device scanner error report, which provides details about comparison errors found during comparison of two copies of data on different devices.</td>
</tr>
<tr>
<td>Action</td>
<td>Check storage device for hardware malfunction</td>
</tr>
</tbody>
</table>

Rebuild

No Rebuild Progress Warning

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NO_REBUILD_PROGRESS_WARNING</td>
</tr>
<tr>
<td>Message</td>
<td>No rebuild progress for 30 minutes</td>
</tr>
<tr>
<td>Severity</td>
<td>Warning</td>
</tr>
</tbody>
</table>
No Rebuild Progress Error

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NO_REBUILD_PROGRESS_ERROR</td>
</tr>
<tr>
<td>Message</td>
<td>No rebuild progress for 60 minutes</td>
</tr>
<tr>
<td>Severity</td>
<td>Error</td>
</tr>
<tr>
<td>Description</td>
<td>Rebuild did not progress for 60 minutes during the current recovery</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support</td>
</tr>
</tbody>
</table>

No Rebuild Progress Critical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>NO_REBUILD_PROGRESS_CRITICAL</td>
</tr>
<tr>
<td>Message</td>
<td>No rebuild progress for 180 minutes</td>
</tr>
<tr>
<td>Severity</td>
<td>Critical</td>
</tr>
<tr>
<td>Description</td>
<td>Rebuild did not progress for 180 minutes during the current recovery</td>
</tr>
<tr>
<td>Action</td>
<td>Contact EMC Support</td>
</tr>
</tbody>
</table>

Rebuild Progress Resumed

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>REBUILD_PROGRESS_RESUMED</td>
</tr>
<tr>
<td>Message</td>
<td>Rebuild progress resumed</td>
</tr>
<tr>
<td>Severity</td>
<td>Info</td>
</tr>
<tr>
<td>Description</td>
<td>Following a detection of a rebuild not progressing, the system has now detected that the rebuild progress has resumed. The system is currently recovering.</td>
</tr>
<tr>
<td>Action</td>
<td>None</td>
</tr>
</tbody>
</table>
System events
The following topics describe using ScaleIO on Xen.

- Overview of ScaleIO on Xen ... 268
- Adding a volume in XenServer environment .. 268
- Removing a ScaleIO volume from Xen ... 269
- Modifying the size of a ScaleIO volume ... 270
- Xen v6.5 High Availability .. 271
Overview of ScaleIO on Xen

This section describes an overview of using ScaleIO on XEN.

ScaleIO best practice is to install all ScaleIO components on dom0. The installation and configuration of ScaleIO objects are the same as in a regular Linux system.

By default, dom0 comes with approximately 800 MB of memory. This might not be enough if an SDS and MDM are installed together.

It is recommended to increase dom0 memory to 4 GB. For details of how to do this, see http://support.citrix.com/article/CTX134951.

This appendix contains additional commands that must be performed on the hypervisor when adding or removing a ScaleIO volume or changing its volume.

Note
In Xen, RAM read cache is limited to 1GB.

In the Xen environment, all ScaleIO CLI commands begin with siocli, and not scli.

Adding a volume in XenServer environment

You enable use of volumes in HA, by enabling the volumes to be recognized as HBA.

This procedure is relevant for XenServer v6.5 and XenServer v7.0.

Procedure

1. Use the ScaleIO CLI to add and map a ScaleIO volume, as described in "Creating volumes" in the ScaleIO User Guide.
2. Get the host UUID by running the following command:

   ```
   xe host-list
   ```

3. For XenServer v6.5 and v7.0, edit the file /etc/lvm/lvm.conf by editing the lines that starts with types, and adding "scini", 16 inside the square brackets.

 Example:

   ```
   types = ["nvme", 64, "mtip32xx", 64, "scini", 16]
   ```

4. For XenServer v7.0 (only), edit /etc/lvm/master/lvm.conf, as follows:
 a. Locate the lines that begin with types.
 b. In each of these lines, add this string inside the square brackets: "scini", 16

   ```
   types = ["nvme", 64, "mtip32xx", 64, "scini", 16]
   ```

5. Use the retrieved host UUID while running the sr-create command.
Note

ScaleIO provides a unique ID to each volume. It is highly recommended to use the unique ID when running on XenServer. For example, the ScaleIO volume name in the hypervisor is /dev/disk/by-id/scsi-emc-vol-4a7987a751237ae0-3d467d3900000000.

Example

```
xe sr-create host-uuid=09fa5d27-aa08-4c71-86bb-71dc73e9f59f content-type="ScaleIO" name-label="ScaleIO" shared=true
device-config:SCSIid=emc-vol-4a7987a751237ae0-3d467d3900000000 type=lvmohba
```

Note

To add a shared storage repository, the following conditions must be fulfilled:

- All nodes in the XenServer Center Storage Pool must be installed with SDC.
- The ScaleIO volume to be used as the shared SR must be mapped to all SDCs in the Storage Pool.

Removing a ScaleIO volume from Xen

There are steps to perform before removing a ScaleIO volume in a Xen environment.

Before unmapping a volume, perform the following:

Procedure

1. Get the SR UUID:

   ```
   xe sr-list
   ```

2. Get the PB UUID:

   ```
   xe pbd-list sr-uuid=<sr_uuid>
   ```

 where `<sr_uuid>` is the result from the previous step

3. Unplug the PBD:

   ```
   xe pbd-unplug uuid=<pbd_uuid>
   ```

 where `<pbd_uuid>` is the result from the previous step

4. Destroy the PBD:

   ```
   xe pbd-destroy uuid=<pbd_uuid>
   ```
5. Forget the PBD:

```bash
sr-forget uuid=<sr_uuid>
```

where `<sr_uuid>` is the result from the first step

Example:

```
xe sr-list
xe pbd-list sr-uuid=4232efb0-7610-b18f-51ee-46bf377021d2
xe pbd-unplug uuid=c478e01f-eb5a-237f-9ed3-9c1c9173431b
xe pbd-destroy uuid=c478e01f-eb5a-237f-9ed3-9c1c9173431b
xe sr-forget uuid=4232efb0-7610-b18f-51ee-46bf377021d2
```

Results

You can now use the SCLI to remove a volume. To run CLI commands, you must be logged in. Actual command syntax is operating-system dependent. For more information, see the ScaleIO CLI Reference Guide.

Modifying the size of a ScaleIO volume

Procedure

1. Use the CLI to modify the ScaleIO volume size.
2. Use the Xen command line to modify the volume size.

 In the following example the volume name in Dom0 is `/dev/disk/by-id/scsi-emc-vol-593b29a1640c4d79-0563e40f00000000`

 Example:

3. Issue the following command in the Xen command line.

 - Xen 6.5:
     ```bash
     pvresize /dev/disk/by-id/scsi-emc-vol-593b29a1640c4d79-0563e40f00000000
     ```

 - Xen 7.0:
     ```bash
     pvresize /dev/disk/by-id/scsi-emc-vol-593b29a1640c4d79-0563e40f00000000 --config global{metadata_read_only=0}
     ```

4. Check the output to validate that the new size is set:

   ```bash
   pvs
   ```

5. Read the UUID from `xe sr-list`.
6. In the Xen command line, issue the following command with the UUID that was obtained with `xe sr-list` as `<UUID>`.

```
xe sr-scan uuid=<UUID>
```

Xen v6.5 High Availability

Enable use of volumes in HA, by enabling the volumes to be recognized as HBA.

Procedure

1. Install ScaleIO as described in the *EMC ScaleIO Deployment Guide*.
2. Modify the `lvm.conf` file, as described in the “Adding a volume” section of the *ScaleIO User Guide*, Xen appendix.
3. Create and map a ScaleIO volume to your Xen hosts.
4. From the Xen pool master, list the available storage:

   ```
   #ls -l /dev/disk/by-id/
   ```

 This will return an overview of the attached ScaleIO volumes, similar to the following:

   ```
   # scsi-"volume id" -> ../../scinia
   ```

5. From the Xen pool master, issue the Xen Storage Repository create command:

   ```
   # xе sr-create name-label="Any_name" content-type="ScaleIO" shared=true device-config:SCSIid="volume id" type=lvmohba
   ```

 where `volume id` *is the value of volume id identified in the* `scsi-”volume id”` *output in the previous step.*

Results

Your ScaleIO volume should now appear on your Xen hosts as a Storage Repository (SR).
CHAPTER 16

Configuring ScaleIO in OpenStack Environments

The following topics contain information about ScaleIO provisioning in an OpenStack cloud operating system environment.

- Overview

274
Overview

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a data center. These are all managed using a dashboard or a command line interface that gives administrators control, while allowing their users to provision resources through a web-based interface. OpenStack is used in a wide variety of industries and use cases, and is supported by more than 400 leading IT hardware and software companies, who have contributed to development of the OpenStack project.

In the case of Block storage, OpenStack provides the Cinder solution, which is a block storage solution for use with servers and applications. Cinder is designed to work with widely available virtualization technologies, bare metal, and high-performance computing configurations. It can integrate with legacy systems and with third-party technologies, such as ScaleIO.

For more information, refer to OpenStack documentation (https://docs.openstack.org), especially the Cinder Configuration Guide.
CHAPTER 17

SNMP Trap Support

The following topics describe ScaleIO support for SNMP.

- **General**...276
- **Supported alerts and event numbering conventions**.................................276
- **Configure SNMP properties after deployment**...303
- **ScaleIO.mib file**..305
SNMP Trap Support

General

SNMP traps are implemented as part of the ScaleIO Gateway, using SNMP v2. UDP transport is used for SNMP, and the default port for trap communication is 162. The SNMP feature is disabled, by default. If you want to use the SNMP feature, enable it by editing the gatewayUser.properties file. For more information, see Configure SNMP properties after deployment on page 303.

The SNMP trap sender includes a proprietary/custom MIB called scaleio.mib. This MIB file is located on the ScaleIO gateway server, in the /gateway/webapps/ROOT/WEB-INF/classes folder. A copy of the MIB file is included in at the end of this section. A general trap type with a unique identification number (OID) is defined in the MIB, so that the SNMP traps are configured to contain alert data within themselves, and use a single OID (as opposed to granular traps). All the SNMP traps contain variable bindings for severity type, which is the alert classification; the ID of the source object for which the alert was created; and an action code, which is the event number.

The alerts are calculated based on MDM polling. A repeating trap will be sent the first time that it occurs, and will only be sent again if the resend interval has passed since it was last sent. The resend frequency parameter can be configured using the Settings window in the ScaleIO GUI.

Only TRAP commands/messages are supported, and are initiated by the ScaleIO SNMP traps manager. GET/SET operations are not supported (or more specifically, GET/GET NEXT/GET BULK/SET/INFORM/RESPONSE).

In addition to SNMP traps, alert messages are also displayed in the GUI.

Both the ScaleIO gateway and the SNMP trap receivers must be configured. Traps can be sent to up to two SNMP trap receivers. The scaleio-gateway service must be restarted after configuration.

Supported alerts and event numbering conventions

The following alerts can be sent as SNMP traps by the ScaleIO system. All events are numbered in the following format: SIO<CLASS>.<TYPE>.<ISSUE>. The issue number is a running counter for all issues in a specific type.

Open and closing alerts will consist of the same code and issue number, with the exception of the first digit (0 or 1) in the <ISSUE> section. For example:

- SIOXX.XX.0XXXXXXX indicates that the alert is active
- SIOXX.XX.1XXXXXXX indicates that the alert has been closed

CLASS/TYPE:

- System = 1
 - Capacity = 1
 - License = 2
- MDM = 2
 - MDM_Cluster = 1
 - Protection_Domain = 2
 - Fault_Set = 3
- Storage_Pool = 4
- SDS = 3
- SDS = 1
- Device = 2
- SDC = 4
- SDC = 1
- Volume = 5
- ESRS = 10
- ESRS = 1

Note

Each alert has a corresponding Closed state, represented by the code SIOXX.XX. 1XXXXXX. For example Open state: SIO02.01.0000003, Closed state: SIO02.01.1000003

ScaleIO Alerts in SNMP, GUI, REST, and ESRS

This table summarizes alerts generated by ScaleIO systems.

<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>License expired</td>
<td>LICENSEExpired</td>
<td>System.License.LicenseExpired</td>
<td>SIO01.02.000001</td>
<td>5 (Critical)</td>
<td>To resume operational mode, contact EMC Support for license renewal. If you have already renewed your license, install it.</td>
</tr>
<tr>
<td>The system’s license will expire in n days</td>
<td>LICENSE_ABOUT_TO_EXPIRE</td>
<td>System.License.Is_About_To_Expire</td>
<td>SIO01.02.000002</td>
<td>3 (Error) 2 (Warning) according to time left and limits</td>
<td>Contact EMC Support for license renewal. If you have already renewed your license, install it.</td>
</tr>
<tr>
<td>ScaleIO is using a trial license</td>
<td>TRIAL_LICENSE_USED</td>
<td>System.License.Trial-license_Used</td>
<td>SIO01.02.000003</td>
<td>2 (Warning)</td>
<td>Purchase a license and install it.</td>
</tr>
<tr>
<td>Oscillating failures reported</td>
<td>OBJECT_HAS_OSCILLATING_FAILURES</td>
<td>System.Oscillating-Failure-Object</td>
<td>SIO01.03.000001</td>
<td>2 (Warning)</td>
<td>Check oscillating failures of the component and take action</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>_has_oscillating_failures</td>
<td>OBJECT_HAS_OSCILLATING_NETWORK_FAILURES</td>
<td>System. Oscillating_Failures.OBJECT_HAS_OSCILLATING_NETWORK_FAILURES</td>
<td>SIO01.03.0000002</td>
<td>2 (Warning)</td>
<td>Check the oscillating failure report, that can be accessed from one of the management interfaces. Check whether there is a problem with network links, fix, and restart the counters.</td>
</tr>
<tr>
<td>There are oscillating network failures</td>
<td>GW_CONFIGURATION_INVALID_MDM_CREDENTIALS</td>
<td>System. Credentials.GW_CONFIGURATION_INVALID_MDM_CREDENTIALS</td>
<td>SIO01.04.0000001</td>
<td>5 (Critical)</td>
<td>Configure the MDM credentials in the ScaleIO Gateway using the SioGWTool.</td>
</tr>
<tr>
<td>No valid MDM credentials are configured in ScaleIO Gateway</td>
<td>MDM_CREDENTIALS_ARE_NOT_CONFIGURED</td>
<td>System. Credentials.MDM_CREDENTIALS_ARE_NOT_CONFIGURED</td>
<td>SIO01.04.0000002</td>
<td>5 (Critical)</td>
<td>Configure MDM credentials on the ScaleIO Gateway using the SioGWTool.</td>
</tr>
<tr>
<td>MDM credentials are not configured in the ScaleIO Gateway</td>
<td>GW_USER.Requires_PW_CHANGE</td>
<td>System. Credentials.GW_USER.Requires_PW_CHANGE</td>
<td>SIO01.04.0000004</td>
<td>5 (Critical)</td>
<td>Configure MDM credentials on the ScaleIO Gateway using the SioGWTool.</td>
</tr>
<tr>
<td>System upgrade is in progress</td>
<td>UPGRADE_IN_PROGRESS</td>
<td>System. Upgrade</td>
<td>SIO01.05.0000001</td>
<td>3 (Error)</td>
<td>Monitor the upgrade process.</td>
</tr>
</tbody>
</table>
Table 21 ScaleIO Alerts in SNMP, GUI, REST, and ESRS (continued)

<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScaleIO Gateway version is too old</td>
<td>GW_TOO_OLD</td>
<td>System. Upgrade. GW_TO_O_OLD</td>
<td>SIO01.05.00 00002</td>
<td>5 (Critical)</td>
<td>Upgrade the ScaleIO Gateway to the same version as the rest of your system. and check that it is completed successfully.</td>
</tr>
<tr>
<td>The MDM is not operating in clustered mode</td>
<td>MDM_NOT_CLUSTERED</td>
<td>MDM_Cluster.MDM_Not_Clustered</td>
<td>SIO02.01.00 00001</td>
<td>5 (Critical)</td>
<td>MDM cluster was manually set to SINGLE mode. Confirm that this is an expected operation. Working in SINGLE mode is not recommended. Prepare the cluster modules (if needed), and return to CLUSTER mode.</td>
</tr>
<tr>
<td>MDM fails over frequently</td>
<td>MDM_FAILS_OVER_FREQUENTLY</td>
<td>MDM_Cluster.MDM_Fails_Over_Frequently</td>
<td>SIO02.01.00 00003</td>
<td>5 (Critical)</td>
<td>3 (Error) 2 (Warning) according to disconnect count and hardcoded values (2/3/10) The MDMs frequently swap ownership. No action required.</td>
</tr>
<tr>
<td>Forward rebuild cannot proceed</td>
<td>FWD_REBUILD_STUCK</td>
<td>MDM_Cluster.FWD_REBUILD_D_STUCK</td>
<td>SIO02.01.00 00004</td>
<td>2 (Warning)-5 (Critical)</td>
<td>Check the system for lack of spare capacity and/or failed capacity, and either fix the problem or add capacity if necessary.</td>
</tr>
<tr>
<td>Backward rebuild cannot proceed</td>
<td>BKWD_REBUILD_STUCK</td>
<td>MDM_Cluster.BKWD_REBUILD_D_STUCK</td>
<td>SIO02.01.00 00005</td>
<td>2 (Warning)-5 (Critical)</td>
<td>Check the system for lack of spare capacity and/or failed capacity, and either fix the problem or add capacity if necessary.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Rebalance cannot proceed</td>
<td>REBALANCE_STUCK</td>
<td>MDM.MDM_Cluster.REBALANCE_STUCK</td>
<td>SIO02.01.00 00006</td>
<td>5 (Critical) 3 (Error) 2 (Warning)</td>
<td>Add a physical disk; if this is not possible, reduce the spare policy while maintaining enough spare to sustain a rebuild, if necessary.</td>
</tr>
<tr>
<td>The MDM cluster is degraded, and data is not protected</td>
<td>CLUSTER_DEGRADED</td>
<td>MDM.MDM_Cluster.CLUSTER_DEGRADED</td>
<td>SIO02.01.00 00007</td>
<td>3 (Error)-5 (Critical)</td>
<td>Check that all MDM cluster nodes are functioning correctly, and fix and replace faulty nodes, if necessary, in order to return to full protection.</td>
</tr>
<tr>
<td>Cannot connect to the MDM cluster, but the cluster itself is operational</td>
<td>MDM_CONNECTION_LOST</td>
<td>MDM.MDM_Cluster.MDM_CONNECTION_LOST</td>
<td>SIO02.01.00 00008</td>
<td></td>
<td>Check the connection to the MDM</td>
</tr>
<tr>
<td>The MDM is not operating in Clustered mode</td>
<td>MDM_NOT_CLUSTERED_VOLUMES_EXIST</td>
<td>MDM.MDM_Cluster.MDM_NOT_CLUSTERED_VOLUMES_EXIST</td>
<td>SIO02.01.00 00009</td>
<td>5 (Critical)</td>
<td>The MDM cluster was manually set to SINGLE mode. Working in SINGLE mode is not recommended. Single mode means that there is only one copy of the MDM repository. If you lose this copy, all System configurations and all the data on all the existing volumes will be lost. Please verify that this is an expected operation. Prepare the cluster modules (if needed), and return to CLUSTERED mode as soon as possible.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Inactive Protection Domain</td>
<td>PD_INACTIVE</td>
<td>MDM.Protect_Domain.Protect_Inactive</td>
<td>SIO02.02.00001</td>
<td>2 (Warning)</td>
<td>Protection Domain was inactivated by a user command. Confirm that this is an expected operation. This is usually done for maintenance. When maintenance is complete, reactivate the Protection Domain.</td>
</tr>
<tr>
<td>Storage Pool has failed capacity</td>
<td>STORAGE_POOL_HAS_FAILED_CAPACITY</td>
<td>MDM.Storage_Pool.Storage_Pool_has_Failed_Capacity</td>
<td>SIO02.04.00001</td>
<td>5 (Critical)</td>
<td>For the given Storage Pool, for some blocks, both primary and secondary copies are inaccessible. Check and fix the state of all devices in the Storage Pool and all the server’s holding devices in the Storage Pool.</td>
</tr>
<tr>
<td>Storage Pool has degraded capacity</td>
<td>STORAGE_POOL_HAS_DEGRADED_CAPACITY</td>
<td>MDM.Storage_Pool.Storage_Pool_has_Degraded_Capacity</td>
<td>SIO02.04.00002</td>
<td>3 (Error)</td>
<td>For the given Storage Pool, for some blocks, one of the two copies is inaccessible. Check if a server is offline or if there is another server hardware-related issue. Check if a storage device is down.</td>
</tr>
<tr>
<td>Capacity utilization above critical threshold</td>
<td>CAPACITY_UTILIZATION_ABOVE_CRITICAL_THRESHOLD</td>
<td>MDM.Storage_Pool.Capacity_Utilization_Above_Critical_Threshold</td>
<td>SIO02.04.00003</td>
<td>5 (Critical)</td>
<td>Due to thinly provisioned volumes or snapshot usage, the capacity utilization of the Storage Pool is reaching a critical threshold. Remove snapshots, if</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Capacity utilization above high threshold</td>
<td>CAPACITY_UTILIZATION_ABOVE_HIGH_THRESHOLD</td>
<td>MDM.Storage_Pool.Capacity_Utility_Above_High_Threshold</td>
<td>SIO02.04.000004</td>
<td>2 (Warning) 3 (Error)</td>
<td>Due to thinly provisioned volumes or snapshot usage, the capacity utilization of the Storage Pool is reaching a high threshold. Remove snapshots, if possible, or add physical storage.</td>
</tr>
<tr>
<td>Failure recovery capacity is below the threshold</td>
<td>FAILURE_RECOVERY_CAPACITY_BELOW_THRESHOLD</td>
<td>MDM.Storage_Pool.Failure_Recovery_Capacity_Below_Threshold</td>
<td>SIO02.04.000005</td>
<td>3 (Error)</td>
<td>The capacity available for recovery in a degraded storage event is lower than the predefined threshold. Replace failed hardware or add more physical storage.</td>
</tr>
<tr>
<td>Configured spare capacity is smaller than largest fault unit</td>
<td>CONFIGURED_SPARE_CAPACITY_SMALLER_THAN_LARGEST_FAULT_UNIT</td>
<td>MDM.Storage_Pool.Configured_Spare_Capacity_Smaller_Than_Largest_Fault_Unit</td>
<td>SIO02.04.000008</td>
<td>2 (Warning)</td>
<td>Increase the "spare percentage" configured in the system for the Storage Pool, so that the capacity reserved for failure recovery is larger than the largest fault unit in the Storage Pool.</td>
</tr>
<tr>
<td>The Storage Pool relies too heavily (over 50%) on capacity from a single SDS or Fault Set. Balance capacity over other SDSs or Fault Sets.</td>
<td>STORAGE_POOL_UNBALANCED</td>
<td>MDM.Storage_Pool.STORAGE_POOL_UNBALANCED</td>
<td>SIO02.04.000009</td>
<td>3 (Error)</td>
<td>Move some physical disks from the large SDS to the others, or add disks to the smaller SDS in order to approximate the capacity of the large SDS as much as possible.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Storage Pool does not meet the minimum requirement of 3 fault units</td>
<td>NOT_ENOUGH_FAULT_UNITS_IN_SP</td>
<td>MDM.Storage_Pool.Not_Enough_Fault_Units</td>
<td>SIO02.04.00 00010</td>
<td>3 (Error)</td>
<td>Add more SDSs to the Storage Pool to meet the minimum requirement of 3 hosts.</td>
</tr>
<tr>
<td>There are cluster certificates pending approval. For more information, open System Settings > Connection.</td>
<td>UNTRUSTED_CERTIFICATE</td>
<td>MDM.CERTIFICATE.UNTRUSTED_CERTIFICATE</td>
<td>SIO02.05.00 00001</td>
<td>3 (Error)</td>
<td>Pending for approval certificates can be viewed and approved via System Settings > Connection.</td>
</tr>
<tr>
<td>Master MDM Certificate is about to expire</td>
<td>CERTIFICATE_ABOUT_TO_EXPIRE</td>
<td>MDM.CERTIFICATE.CERTIFICATE_ABOUT_TO_EXPIRE</td>
<td>SIO02.05.00 00002</td>
<td>5 (Critical)</td>
<td>Install a valid SSL certificate on the MDM before the old one expires</td>
</tr>
<tr>
<td>Master MDM Certificate has expired</td>
<td>MDM_CERTIFICATE_EXPIRED</td>
<td>MDM.CERTIFICATE.MDM_CERTIFICATE_EXPIRED</td>
<td>SIO02.05.00 00003</td>
<td>5 (Critical)</td>
<td>Install a valid SSL certificate on the host</td>
</tr>
<tr>
<td>Secure connection disabled on MDM</td>
<td>MDM_SECURE_CONNECTION_DISABLED</td>
<td>MDM.CERTIFICATE.MDM_SECURE_CONNECTION_DISABLED</td>
<td>SIO02.05.00 00004</td>
<td>5 (Critical)</td>
<td>Enable secure connections on the MDM in order to protect your login information</td>
</tr>
<tr>
<td>The self-signed certificate presented by the Master MDM is not trusted</td>
<td>MDM_SELF_SIGNED_CERTIFICATE_NOT_TRUSTED</td>
<td>MDM.CERTIFICATE.MDM_SELF_SIGNED_CERTIFICATE_NOT_TRUSTED</td>
<td>SIO02.05.00 00005</td>
<td>5 (Critical)</td>
<td>Check the certificate, and trust it if you see fit to do so</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>MDM does not support secure connections</td>
<td>MDM_SECURE_CONNECTION_NOT_SUPPORTED</td>
<td>MDM.CERTIFICATE.MDM_SECURE_CONNECTION_NOT_SUPPORTED</td>
<td>SIO02.05.000006</td>
<td>5 (Critical)</td>
<td>Check MDM cluster nodes</td>
</tr>
<tr>
<td>The validity period of the certificate presented by the Master MDM starts in the future</td>
<td>MDM_CERTIFICATE_NOT_YET_VALID</td>
<td>MDM.CERTIFICATE.MDM_CERTIFICATE_NOT_YET_VALID</td>
<td>SIO02.05.000007</td>
<td>5 (Critical)</td>
<td>The time and date on the computer where the certificate was created is not consistent with the time and date set in the ScaleIO system. Replace the certificate or fix the system time.</td>
</tr>
<tr>
<td>The Certificate Authority that signed the Master MDM’s certificate is not trusted</td>
<td>MDM_CA_SIGNED_CERTIFICATE_CA_NOT_TRUSTED</td>
<td>MDM.CERTIFICATE.MDM_CA_SIGNED_CERTIFICATE_CA_NOT_TRUSTED</td>
<td>SIO02.05.000008</td>
<td>5 (Critical)</td>
<td>Trust the CA certificate if you see fit</td>
</tr>
<tr>
<td>SDS is disconnected</td>
<td>SDS_DISCONNECTED</td>
<td>SDS.SDS.SDS_DISCONNECTED</td>
<td>SIO03.01.000001</td>
<td>3 (Error)</td>
<td>The SDS service may be down or unreachable over the network. Verify that the SDS service is up and running and that the network is properly connected.</td>
</tr>
<tr>
<td>SDS disconnects frequently</td>
<td>SDS_DISCONNECTS_FREQUENTLY</td>
<td>SDS.SDS.SDS_DISCONNECTS_FREQUENTLY</td>
<td>SIO03.01.000002</td>
<td>3 (Error) 2 (Warning)</td>
<td>The SDS connection is fluctuating due to an unstable network connection. Check</td>
</tr>
</tbody>
</table>
Table 21 ScaleIO Alerts in SNMP, GUI, REST, and ESRS (continued)

<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>the SDS data network connection for Packet Drops, and try to disconnect one of the ports to see if the SDS disconnection issue is resolved by using only one port. If this does not resolve the issue, switch to the other port. If there is still an issue, it may be due to a Faulty NIC, Faulty Switch ports, or a faulty switch. If there is no issue with another switch, the issue was switch-related. Otherwise, the issue may be due to a faulty NIC, which requires NIC replacement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory allocation for RAM Read Cache failed on SDS</td>
<td>SDS_RMCACHE_MEMORY_ALLOCATION_FAILED</td>
<td>SDS.SDS.SDS_Rmcache_Memory_allocation_Failed</td>
<td>SIO03.01.000003</td>
<td>2 (Warning)</td>
<td>The system failed to allocate memory to the SDS RAM Read-Cache. For 32 GB RAM or less, up to 50% of the memory can be allocated for caching. From 32 GB or more, up to 75% of the memory can be allocated for caching. Reduce the configured RAM Read-Cache memory to match the allocation conditions.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>DRL mode: Hardened</td>
<td>DRL_MODE_NON_VOLATILE</td>
<td>SDS.SDS.DRL_MODE_NON_VOLATILE</td>
<td>SIO03.01.00 00004</td>
<td>1 (Info)</td>
<td>DRL Mode is configured to "Hardened" instead of "Volatile". Both modes are configurable.</td>
</tr>
<tr>
<td>RFcache card I/O error</td>
<td>RFCACHE_CARD_IO_ERROR</td>
<td>SDS.SDS.RFCACHE_CARD_IO_ERROR</td>
<td>SIO03.01.00 00005</td>
<td>2 (Warning)</td>
<td>Disable caching on the device and check the health of the device, because it may be faulty. If necessary, replace the device.</td>
</tr>
<tr>
<td>RFcache skipped due to heavy load</td>
<td>RFCACHE_CACHE_SKIP_DUE_TO_HEAVY_LOAD</td>
<td>SDS.SDS.RFCACHE_HE.Cache.SKIP_DUE_TO_HEAVY_LOAD</td>
<td>SIO03.01.00 00006</td>
<td>2 (Warning)</td>
<td>Read Flash Cache is working under a heavy load, and therefore has skipped some IOs. This is a temporary error which should resolve itself. If it persists, try to balance the Storage Pool contents across more SDSs, or add more cache cards.</td>
</tr>
<tr>
<td>RFcache IO stack error</td>
<td>RFCACHE_IO_STUCK_ERROR</td>
<td>SDS.SDS.RFCACHE_HE.IO_STACK_ERROR</td>
<td>SIO03.01.00 00007</td>
<td>2 (Warning)</td>
<td>IO has become stuck on the cache device. Disable caching on the device and check the health of the device, because it may be faulty. If necessary, replace the device.</td>
</tr>
<tr>
<td>RFcache resources are low</td>
<td>RFCACHE_LOW_RESOURCES</td>
<td>SDS.SDS.RFCACHE_HE_LOW_RESOURCES</td>
<td>SIO03.01.00 00008</td>
<td>2 (Warning)</td>
<td>There is not enough RAM available on the server for Read Flash Cache optimal operation. Increase the amount of available RAM.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>RFcache driver path is invalid</td>
<td>RFCACHE_INVALID_DRIVER_PATH</td>
<td>SDS.SDS.RFCACHE.INVALID_DRI VER_PATH</td>
<td>SIO03.01.00 00009</td>
<td>2 (Warning)</td>
<td>The Read Flash cache driver (xcache) is either not installed, or was installed in the wrong location. Install the driver, and contact Customer Support if the problem persists.</td>
</tr>
<tr>
<td>RFcache source configuration is not consistent</td>
<td>RFCACHE_INCONSISTENT_SOUR CE_CONFIGURATION</td>
<td>SDS.SDS.RFCACHE.INCONSIST ENT_SOURCE_CONFIGURATION</td>
<td>SIO03.01.00 00010</td>
<td>2 (Warning)</td>
<td>Check RFcache state of all disks in the pool and adjust them so that all disks have the same caching state.</td>
</tr>
<tr>
<td>RFcache source configuration is not consistent</td>
<td>RFCACHE_INCONSISTENT_CACH E_CONFIGURATION</td>
<td>SDS.SDS.RFCACHE.INCONSIST ENT_CACHE_CONFIGURATION</td>
<td>SIO03.01.00 00011</td>
<td>2 (Warning)</td>
<td>Query the system to determine what is not consistent in the configurations of the Read Flash cache driver and the SDS where the cache device is located.</td>
</tr>
<tr>
<td>RFcache device does not exist</td>
<td>RFCACHE_DEVICE_DOES_NOT_EXIST</td>
<td>SDS.SDS.RFCACHE.DEVICE_DOES NOT_EXIST</td>
<td>SIO03.01.00 00012</td>
<td>2 (Warning)</td>
<td>You tried to add a cache device that does not exist. Check and fix Read Flash Cache configuration.</td>
</tr>
<tr>
<td>RFcache API mismatch</td>
<td>RFCACHE_API_ERROR_MISMATCH</td>
<td>SDS.SDS.RFCACHE.API_ERROR_MISMATCH</td>
<td>SIO03.01.00 00013</td>
<td>2 (Warning)</td>
<td>The Read Flash Cache (xcache) driver version and SDS version do not match. Try to upgrade them to the same version. If the problem persists, contact Customer Support.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SDS is in Maintenance Mode</td>
<td>SDS_IN_MAINTENANCE</td>
<td>SDS.SDS.SDS.IN_MAINTENANCE</td>
<td>SIO03.01.00 00014</td>
<td>2 (Warning)</td>
<td>The SDS is currently in Maintenance Mode. Exit Maintenance Mode once maintenance is complete. If an NDU is in progress, ignore this warning.</td>
</tr>
<tr>
<td>Device failed</td>
<td>DEVICE_FAILED</td>
<td>SDS.Devic.e.Device_Failed</td>
<td>SIO03.02.00 00001</td>
<td>3 (Error)</td>
<td>The SDS device could not be opened, read from or written to. Validate the device state. Check the cause of the error, and determine if it is a human error or a system malfunction. Check hardware if needed.</td>
</tr>
<tr>
<td>Device test is done and device is pending activation</td>
<td>DEVICE_PENDING_ACTIVATION</td>
<td>SDS.Devic.e.Device_Pending_Activation</td>
<td>SIO03.02.00 00002</td>
<td>2 (Warning)</td>
<td>The SDS device has been added and tested. Activate the SDS device.</td>
</tr>
<tr>
<td>Device has fixed read errors</td>
<td>FIXED_READ_ERROR_COUNT_AB OVE_WARNING_THRESHOLD</td>
<td>SDS.Devic.e.FIXED_READ_ERROR_COUNT_ABOVE_WARNIN G_THRESHOLD</td>
<td>SIO03.02.00 00003</td>
<td>3 (Error) if counter > 0</td>
<td>Read from the SDS device failed. Data was corrected from the other copy. No action is required, but note that the device might be faulty.</td>
</tr>
<tr>
<td>Device has fixed read errors</td>
<td>FIXED_READ_ERROR_COUNT_ABOVE_CRITICAL_THRESHOLD</td>
<td>SDS.Devic.e.FIXED_READ_ERROR_COUNT_ABOVE_CRITICAL_THRESHOLD</td>
<td>SIO03.02.00 00004</td>
<td>5 (Critical) if counter >= 5</td>
<td>SDS device read failed more than 5 times. Replace the physical device.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Device failed: All IO to the device will be stopped, and data will be relocated to another device.</td>
<td>DEVICE_ERROR_ERROR</td>
<td>SDS.Device_Error</td>
<td>SIO03.02.00 00005</td>
<td>5 (Critical)</td>
<td>Check the device, and if necessary, replace it</td>
</tr>
<tr>
<td>Device failed: All IO to the device will be stopped, and data will be relocated to another device.</td>
<td>DEVICE_ERROR_WARNING</td>
<td>SDS.Device_Error Warning</td>
<td>SIO03.02.00 00006</td>
<td>3 (Error)</td>
<td>Check the device, and if necessary, replace it</td>
</tr>
<tr>
<td>Device malfunction has been detected.</td>
<td>DEVICE_ERROR_NOTICE</td>
<td>SDS.Device_Error Notice</td>
<td>SIO03.02.00 00007</td>
<td>2 (Warning)</td>
<td>Check the device, and if necessary, replace it</td>
</tr>
<tr>
<td>Minor failures have been detected in device performance.</td>
<td>DEVICE_ERROR_INFO</td>
<td>SDS.Device_ErrorInfo</td>
<td>SIO03.02.00 00008</td>
<td>2 (Warning)</td>
<td>Check the device, and if necessary, replace it</td>
</tr>
<tr>
<td>Disk temperature is above the configured threshold, and may fail soon if no action is taken.</td>
<td>SMART_TEMPERATURE_STATE_FAILED_NOW</td>
<td>SDS.Smart_Temperature_STATE_Failed.Now</td>
<td>SIO03.02.00 00009</td>
<td>3 (Error)</td>
<td>Check the temperature in the server and at the data center. Check if a fan alert is raised in the node.</td>
</tr>
<tr>
<td>The disk is near the end of its working life, and should be replaced.</td>
<td>SMART_END_OF_LIFE_STATE_FAILED_NOW</td>
<td>SDS.Smart_T_End_Of_Life_State_Failed.Now</td>
<td>SIO03.02.00 00011</td>
<td>3 (Error)</td>
<td>Replace the disk.</td>
</tr>
<tr>
<td>The disk may be about to fail, or may be operating with reduced performance.</td>
<td>SMART_AGGREGATED_STATE_FAILED_NOW</td>
<td>SDS.Smart_T_Aggregated_State_Failed.Now</td>
<td>SIO03.02.00 00013</td>
<td>3 (Error)</td>
<td>Consider replacing the disk.</td>
</tr>
<tr>
<td>The SDC is either down or unreachable over the network</td>
<td>SDC_DISCONNECTED</td>
<td>SDC.SDC_DISCONNECTED</td>
<td>SIO04.01.00 00001</td>
<td>3 (Error)</td>
<td>Verify that the SDC service is up and running and that the network is</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>No more SDCs can be defined on this system; the maximum has been reached</td>
<td>SDC_MAX_COUNT</td>
<td>SDC.SDC.SDC._Max_Count</td>
<td>SIO04.01.00 00002</td>
<td>3 (Error)</td>
<td>The maximum number of SDCs in the system has been reached (1024^2).</td>
</tr>
<tr>
<td>SSD lifespan is over endurance threshold</td>
<td>PHYSICAL_DRIVE_ENDURANCE_USED_ABOVE_THRESHOLD</td>
<td>Storage_Controller.Physical.Drive.Endurance_Used_Above_Threshold</td>
<td>SIO06.01.00 00004</td>
<td>5 (Critical)</td>
<td>Replace the SSD device.</td>
</tr>
<tr>
<td>The Physical Disk temperature has exceeded the configured threshold</td>
<td>PHYSICAL_DRIVE_INVALID_TEMP</td>
<td>Storage_Controller.Physical.Drive.Invalid_Temperature</td>
<td>SIO06.01.00 00005</td>
<td>5 (Critical)</td>
<td>Access the server and its environment are properly cooled. Ensure that the internal chassis fans are working, and that there is adequate airflow.</td>
</tr>
<tr>
<td>The Physical Drive's cache is not disabled</td>
<td>PHYSICAL_DRIVE_INVALID_PD_CACHE_POLICY</td>
<td>Storage_Controller.Physical.Drive.Invalid_PD_Cache_Policy</td>
<td>SIO06.01.00 00006</td>
<td>3 (Error)</td>
<td>Disable the Physical Drive physical cache. Note: This may cause DI issues in power cycle scenarios.</td>
</tr>
<tr>
<td>Device was requested to use as DAS Cache but it is not</td>
<td>DEVICE_SHOULD_USE_AS_DAS_CACHE_BUT_IT_IS_NOT</td>
<td>Storage_Controller.Physical.Drive.Device_Should_Use_As_Das_Cache_But_It_Is_Not</td>
<td>SIO06.01.00 00007</td>
<td>3 (Error)</td>
<td></td>
</tr>
<tr>
<td>The Logical Disk read policy is not</td>
<td>LOGICAL_DISK_INVALID_READ_AHEAD_POLICY</td>
<td>Storage_Controller</td>
<td>SIO06.02.00 00001</td>
<td>3 (Error)</td>
<td>Access the storage controller and</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>set to "Read-Ahead"</td>
<td>r.Logical_Disk.IN VALID_READ_AHEAD_POLICY</td>
<td></td>
<td></td>
<td></td>
<td>change the Logical Disk's read policy to "Read Ahead".</td>
</tr>
<tr>
<td>The Logical Disk IO policy is not Configured properly (Write-Back)</td>
<td>LOGICAL_DISK_INVALID_WRITE_BACK_POLICY</td>
<td>Storage_Controller.r.Logical_Disk.IN VALID_WRITE_BACK_POLICY</td>
<td>SIO06.02.00 00002</td>
<td>3 (Error)</td>
<td>Check the Raid controller battery status, a fault in the battery will impact the Write-Back functionality.</td>
</tr>
<tr>
<td>Logical Disk access mode is not set to "Read-Write"</td>
<td>LOGICAL_DISK_INVALID_ACCESS_MODE</td>
<td>Storage_Controller.r.Logical_Disk.IN VALID_ACCESS_MODE</td>
<td>SIO06.02.00 00003</td>
<td>5 (Critical)</td>
<td>Access the storage controller and change the logical disk's access mode to "Read-Write".</td>
</tr>
<tr>
<td>The Logical Disk RAID level is not set to RAID0</td>
<td>LOGICAL_DISK_INVALID_RAID_LEVEL</td>
<td>Storage_Controller.r.Logical_Disk.IN VALID_RAID_LEVEL</td>
<td>SIO06.02.00 00004</td>
<td>3 (Error)</td>
<td>The RAID type is set in the storage controller is incorrect. Access the storage controller, verify that the Logical Disk does not contain any data that is not backed-up, destroy the Logical Disk, and re-create the logical disk as RAID0.</td>
</tr>
<tr>
<td>Logical Disk caching policy is not set to "DirectIO"</td>
<td>LOGICAL_DISK_INVALID_CACHE_POLICY</td>
<td>Storage_Controller.r.Logical_Disk.IN VALID_CACHE_POLICY</td>
<td>SIO06.02.00 00005</td>
<td>3 (Error)</td>
<td>Access the storage controller, and change the RAID0 caching policy for the Logical Disk to "DirectIO".</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Logical disk is no longer being cached</td>
<td>LOGICAL_DISK_NO_LONGER_CACHED</td>
<td>Storage_ Controller.Logical_Disk.LOGICAL_DISK_NO_LONGER_CACHE</td>
<td>SIO06.02.00 00006</td>
<td>3 (Error)</td>
<td>Disable the Physical Drive physical cache. Note: This may cause DI issues in power cycle scenarios.</td>
</tr>
<tr>
<td>The state of the backup battery in the storage controller is not optimal</td>
<td>BATTERY_INVALID_STATE</td>
<td>Storage_ Controller.Battery.Invalid_State</td>
<td>SIO06.03.00 00001</td>
<td>5 (Critical) 3 (Error)</td>
<td>The backup battery is not fully charged, but it will recharge itself while the storage controller is powered on.</td>
</tr>
<tr>
<td>The backup battery in the storage controller needs to be replaced</td>
<td>BATTERY_REPLACEMENT_REQUIRED</td>
<td>Storage_ Controller.Battery.REPLACEMENT_REQUIR ED</td>
<td>SIO06.03.00 00002</td>
<td>5 (Critical)</td>
<td>The backup battery in the storage controller may be nearing the end of its working life. Replace the battery.</td>
</tr>
<tr>
<td>The storage controller battery temperature is not within the configured threshold</td>
<td>BATTERY_INVALID_TEMPERATURE</td>
<td>Storage_ Controller.Battery.INVALID_TEMPERATURE</td>
<td>SIO06.03.00 00003</td>
<td>3 (Error)</td>
<td>Check the temperature in the server and at the data center. Check if a fan alert is raised in the node. Check the battery and the RAID controller and replace faulty items.</td>
</tr>
<tr>
<td>There is no backup battery installed in the storage controller</td>
<td>BATTERY_NOT_PRESENT</td>
<td>Storage_ Controller.Battery.NOT_PRESENT</td>
<td>SIO06.03.00 00004</td>
<td>5 (Critical)</td>
<td>Install a backup battery in the storage controller.</td>
</tr>
<tr>
<td>The storage controller contains an incompatible battery pack</td>
<td>BATTERY_INVALID_PACK_ENERGY</td>
<td>Storage_ Controller.Battery.Invalid_Pack_Energy</td>
<td>SIO06.03.00 00005</td>
<td>3 (Error)</td>
<td>Replace the storage controller battery with one that is compatible with your controller's model.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RAID controller’s battery has invalid voltage state</td>
<td>BATTERY_INVALID_VOLTAGE</td>
<td>Storage_Controller.Battery.Invalid_Voltage</td>
<td>SIO06.03.00 00006</td>
<td>3 (Error)</td>
<td>Check the RAID controller’s battery. It may need to be replaced.</td>
</tr>
<tr>
<td>Hypervisor boot drive state is not OK</td>
<td>BOOT_DRIVE_INVALID_STATE</td>
<td>Node.Boot_Drive.Invalid_State</td>
<td>SIO07.01.00 00001</td>
<td>3 (Error)</td>
<td>The drive on which the ESXi hypervisor is installed has reported an error. Replace the drive and reinstall the ESXi on the new drive.</td>
</tr>
<tr>
<td>The storage controller is not operating optimally</td>
<td>STORAGE_CONTROLLER_INVALID_STATE</td>
<td>Node.Storage_Controller.Invalid_State</td>
<td>SIO07.02.00 00001</td>
<td>5 (Critical)</td>
<td>The storage controller may be faulty, and should be replaced.</td>
</tr>
<tr>
<td>The storage controller temperature has exceeded the configured threshold</td>
<td>STORAGE_CONTROLLER_INVALID_TEMPERATURE</td>
<td>Node.Storage_Controller.Invalid_Temperature</td>
<td>SIO07.02.00 00002</td>
<td>5 (Critical) 3 (Error)</td>
<td>Ensure that the server and its environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
<tr>
<td>CacheCade license is not installed</td>
<td>STORAGE_CONTROLLER_CACHECADE_NOT_LICENSED</td>
<td>Node.Storage_Controller.CacheCade_Not_Licensed</td>
<td>SIO07.02.00 00003</td>
<td>3 (Error)</td>
<td>Install a CacheCade license on the storage controller.</td>
</tr>
<tr>
<td>Some of the disk slots in the storage controller are empty</td>
<td>STORAGE_CONTROLLER_NOT_ALL_SLOTS_FULL</td>
<td>Node.Storage_Controller.Not_All_Slots_Full</td>
<td>SIO07.02.00 00004</td>
<td>3 (Error)</td>
<td>Add more disks if needed. If a disk was removed during a FRU (Field Replacement Unit) operation, insert the new disk into the chassis.</td>
</tr>
<tr>
<td>Unable to query RAID controller due to insufficient permissions</td>
<td>NODE_FAILED_TO_QUERY_RAID_CONTROLLER_INVALID_PERMISSIONS</td>
<td>Node.Storage_Controller.NODE_FAILED_TO_QUERY</td>
<td>SIO07.02.00 00005</td>
<td>5 (Critical)</td>
<td>Verify that the user name and password of the ScaleIO VM match the user name and password configured in the</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Y_RAID_CONTROLLER_INVALID PERMISSIONS</td>
<td></td>
<td></td>
<td>Y_RAID_CONTROLLER_INVALID PERMISSIONS</td>
<td></td>
<td>AMS (System Settings menu > System Settings > Security option). Resolve the differences and try again.</td>
</tr>
<tr>
<td>The physical CPU socket is not enabled</td>
<td>SOCKET_DISABLED</td>
<td>Node.Cpu_Socket_Disabled</td>
<td>SIO07.03.00 00001</td>
<td>3 (Error)</td>
<td>Enable the CPU socket in the server BIOS.</td>
</tr>
<tr>
<td>Not all CPU cores are enabled</td>
<td>SOCKET_NOT_ALL_CORES_ENABLED</td>
<td>Node.Cpu_Socket.NOT_ALL_CORES_ENABLED</td>
<td>SIO07.03.00 00002</td>
<td>3 (Error)</td>
<td>Change the physical CPU core configuration in the server BIOS.</td>
</tr>
<tr>
<td>CPU is not operating at full speed</td>
<td>SOCKET_SPEED_IS_NOT_MAX_SPEED</td>
<td>Node.Cpu_Socket.SPEED_IS_NOT_MAX_SPEED</td>
<td>SIO07.03.00 00003</td>
<td>3 (Error)</td>
<td>Set the CPU clock speed in the server's BIOS to its maximum speed.</td>
</tr>
<tr>
<td>CPU temperature is not within threshold</td>
<td>CPU_SOCKET_INVALID_TEMPERATURE</td>
<td>Node.Cpu_Socket.INVALID_TEMPERATURE</td>
<td>SIO07.03.00 00004</td>
<td>5 (Critical) 3 (Error)</td>
<td>The server's CPU temperature has exceeded the configured threshold. Make sure that the server is properly cooled and that the CPU and internal chassis fans are active.</td>
</tr>
<tr>
<td>The CPU Voltage Regulator's temperature is higher than the configured threshold</td>
<td>CPU_SOCKET_INVALID_VR_TEMPERATURE</td>
<td>Node.Cpu_Socket.INVALID_VR_TEMPERATURE</td>
<td>SIO07.03.00 00005</td>
<td>5 (Critical) 3 (Error)</td>
<td>Make sure that the server is properly cooled and that the CPU and internal chassis fans are active.</td>
</tr>
<tr>
<td>The CPU Voltage Regulator's voltage is not within the configured threshold</td>
<td>CPU_SOCKET_INVALID_VR_VOLTAGE</td>
<td>Node.Cpu_Socket.INVALID_VR_VOLTAGE</td>
<td>SIO07.03.00 00006</td>
<td>5 (Critical) 3 (Error)</td>
<td>1. Verify that the power supply is functioning correctly. 2. Try to replace a port in</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>CPU has invalid voltage state state</td>
<td>CPU_SOCKET_INVALID_VOLTAGE</td>
<td>Node.Cpu_Socket.Invalid_Voltage</td>
<td>SIO07.03.000007</td>
<td>5 (Critical)</td>
<td>Replace the Power Distribution Unit, or supply an external power source to check it. 3. Replace the power cable. 4. Replace the Power Supply Unit module.</td>
</tr>
<tr>
<td>RAM temperature is not within threshold</td>
<td>RAM_INVALID_TEMPERATURE</td>
<td>Node.Ram.Invalid_Temperature</td>
<td>SIO07.04.000001</td>
<td>5 (Critical) 3 (Error)</td>
<td>The temperature of one or more Server RAM modules exceeds the configured threshold. Ensure that the server and its environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
<tr>
<td>RAM voltage regulator's temperature is not within threshold</td>
<td>RAM_INVALID_VR_TEMPERATURE</td>
<td>Node.Ram.INVALID_VR_TEMPERATURE</td>
<td>SIO07.04.000002</td>
<td>5 (Critical) 3 (Error)</td>
<td>Ensure that the server and its environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
<tr>
<td>RAM voltage regulator's voltage is not within threshold</td>
<td>RAM_INVALID_VR_VOLTAGE</td>
<td>Node.Ram.INVALID_VR_VOLTAGE</td>
<td>SIO07.04.000003</td>
<td>5 (Critical) 3 (Error)</td>
<td>Ensure that the server and its environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
<tr>
<td>The node temperature has</td>
<td>NODE_INVALID_TEMPERATURE</td>
<td>Node.Node.Invalid</td>
<td>SIO07.05.000001</td>
<td>5 (Critical) 3 (Error)</td>
<td>Ensure that the server and its environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
</tbody>
</table>

If the system still issues an alert, the DIMM may be faulty, and may have to be replaced.
<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>exceeded the configured threshold</td>
<td></td>
<td>ID_TEMPERATURE</td>
<td></td>
<td></td>
<td>environment are properly cooled and that all the chassis fans are functional.</td>
</tr>
<tr>
<td>The voltage values on the node are not within the configured threshold</td>
<td>NODE_INVALID_VOLTAGE</td>
<td>Node.Node.NODE_INVALID_VOLTAGE</td>
<td>SIO07.05.000002</td>
<td>5 (Critical)</td>
<td>3 (Error) 1. Verify that the power supply is functioning correctly, and then try to replace a port in the Power Distribution Unit or check with external power. 2. Replace the power cable. 3. Replace the Power Supply Module.</td>
</tr>
<tr>
<td>Unable to connect to monitoring agent (BMC)</td>
<td>NODE_FAILED_TO_CONNECT_TO_BMC</td>
<td>Node.Node.NODE_FAILED_TO_CONNECT_TO_BMC</td>
<td>SIO07.05.000004</td>
<td>5 (Critical)</td>
<td>The BMC IP address or User credentials do not respond to AMS queries. Verify network connectivity from the AMS to the BMC IP address, and check that the BMC admin user and password have not been tampered with. Contact customer support for assistance if the problem persists.</td>
</tr>
<tr>
<td>SDC is not installed on this node</td>
<td>NODE_WITH_NO_SDC</td>
<td>Node.Node.NODE_WITH_NO_SDC</td>
<td>SIO07.05.000005</td>
<td>3 (Error)</td>
<td>Consider installing an SDC on this node, so that it can use ScaleIO volumes</td>
</tr>
<tr>
<td>Unable to connect to monitoring agent (SVM)</td>
<td>NODE_FAILED_TO_CONNECT_TO_SVM</td>
<td>Node.Node.NODE_FAILED_TO_CONNECT_TO_SVM</td>
<td>SIO07.05.000006</td>
<td>5 (Critical)</td>
<td>The SVM IP address or User credentials do not respond to AMS queries. Check the SVM state in vCenter and try to</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Unable to connect to monitoring agent (ESX)</td>
<td>NODE_FAILED_TO_CONNECT_TO_ESX</td>
<td>Node.No de.FAILED_TO_CONNECT_TO_ESX</td>
<td>SIO07.05.00 00007</td>
<td>5 (Critical)</td>
<td>The ESX IP address or User credentials do not respond to AMS queries. Check the ESX state in vCenter and try to open the SSH or the console (via BMC http) to it. Then check the messages log for errors.</td>
</tr>
<tr>
<td>Unable to connect to monitoring agent (host)</td>
<td>NODE_FAILED_TO_CONNECT_TO_HOST</td>
<td>Node.No de.FAILED_TO_CONNECT_TO_HOST</td>
<td>SIO07.05.00 00007</td>
<td>5 (Critical)</td>
<td>The ESX IP address or User credentials do not respond to AMS queries. Check the ESX state in vCenter and try to open the SSH or the console (via BMC http) to it. Then check the messages log for errors.</td>
</tr>
<tr>
<td>Unable to connect to monitoring agent (VCenter)</td>
<td>NODE_FAILED_TO_CONNECT_TO_VCENTER</td>
<td>Node.No de.FAILED_TO_CONNECT_TO_VCENTER</td>
<td>SIO07.05.00 00008</td>
<td>5 (Critical)</td>
<td>Ensure that the vCenter configuration is correct, and ensure that the node's Mgmt port is routable to the vCenter IP address.</td>
</tr>
<tr>
<td>Node serial number has changed</td>
<td>NODE_SERIAL_NUMBER_CHANGE</td>
<td>Node.No de.SERIAL_NUMBER_CHANGE</td>
<td>SIO07.05.00 00009</td>
<td>3 (Error)</td>
<td>The S/N of the Motherboard does not match the IP address of the ESX. Either the SATADOM was moved to a new server or the...</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>motherboard was replaced. It is also possible that a new server that has the same IP addresses and the same user and password, but was not installed using the AMS flow, exists in the network. EMC does not support such field replacement cases. Such cases should be solved by replacing nodes using EMC-recommended procedures. For more information, contact Customer Support.</td>
<td>RFcache pool state is "Not Started"</td>
<td>XTREMCACHE_INVALID_STATE</td>
<td>Node.No de.XTREMCACHE_INVALID_STATE</td>
<td>SIO07.05.000010</td>
<td>3 (Error)</td>
</tr>
<tr>
<td>Host certificate is about to expire</td>
<td>HOST_CERTIFICATE_ABOUT_TO_EXPIRE</td>
<td>Node.No de.HOST_CERTIFICATE_ABOUT_TO_EXPIRE</td>
<td>SIO07.05.000014</td>
<td>3 (Error)</td>
<td>Renew the AMS certificate and then run "renew certificate" process</td>
</tr>
<tr>
<td>CMOS battery state is invalid</td>
<td>NODE_INVALID_CMOS_BATTERY</td>
<td>Node.No de.Invalid_Cmos_Battery</td>
<td>SIO07.05.000015</td>
<td>3 (Error)</td>
<td>Check the node's CMOS battery. It may need to be replaced.</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>The node is not being managed by the current AMS.</td>
<td>NODE_NOT_MANAGED_BY_AMS</td>
<td>Node.Node_Not_Managed_By_Ams</td>
<td>SIO07.05.00 00016</td>
<td>5 (Critical)</td>
<td>Verify that the node is not being managed by a different AMS.</td>
</tr>
<tr>
<td>Failed to connect to the SVM due to authentication failure</td>
<td>NODE_FAILED_TO_CONNECT_TO_SVM_AUTH_FAILED</td>
<td>Node.Node_Failed_To_Connect_To_Svm_Auth_Failed</td>
<td>SIO07.05.00 00017</td>
<td>5 (Critical)</td>
<td>Change the SVM's root password to be the one set by the AMS</td>
</tr>
<tr>
<td>Failed to connect to the host. The SSH key has been changed, and is not trusted by the AMS.</td>
<td>NODE_FAILED_TO_CONNECT_TO_HOST_SSH_KEY_MISMATCH</td>
<td>Node.Node_Failed_To_Connect_To_Host_Ssh_Key_Mismatch</td>
<td>SIO07.05.00 00018</td>
<td>5 (Critical)</td>
<td>This is a security issue. Remove the node, and add the node again to the AMS</td>
</tr>
<tr>
<td>Failed to connect to the SVM. The SSH key has been changed, and is not trusted by the AMS.</td>
<td>NODE_FAILED_TO_CONNECT_TO_SVM_SSH_KEY_MISMATCH</td>
<td>Node.Node_Failed_To_Connect_To_Svm_Ssh_Key_Mismatch</td>
<td>SIO07.05.00 00019</td>
<td>5 (Critical)</td>
<td>This is a security issue. Remove the node, and add the node again to the AMS</td>
</tr>
<tr>
<td>Failed to connect to the host because the certificate is not trusted</td>
<td>NODE_FAILED_TO_CONNECT_TO_ESX_CERTIFICATE_NOT_TRUSTED</td>
<td>Node.Node_Failed_To_Connect_To_Esx_Certificate_Not_Trusted</td>
<td>SIO07.05.00 00020</td>
<td>5 (Critical)</td>
<td>This is a security issue. Remove the node, and add the node again to the AMS</td>
</tr>
<tr>
<td>Failed to connect to the host due to authentication failure</td>
<td>NODE_FAILED_TO_CONNECT_TO_HOST_AUTH_FAILED</td>
<td>Node.Node_Failed_To_Connect_To_Host_AUTH_Failed</td>
<td>SIO07.05.00 00021</td>
<td>5 (Critical)</td>
<td>Change the host's root password to be the one set by the AMS</td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>The MDM has a self-signed certificate that was not replaced by the AMS. Connection to the MDM is not authenticated by the AMS.</td>
<td>AMS_MDM_HAS_SELF_SIGNED_CERTIFICATE</td>
<td>Node.No de.Ams_Mdm_Ha s_Self_sIGNED_certificate</td>
<td>SIO07.05.00 00022</td>
<td>5 (Critical)</td>
<td>Disable AMS secure connection, and enable it again in order to automatically sign the MDM certificate. If the previous solution does not work, remove and add the the MDM again in secure mode.</td>
</tr>
<tr>
<td>Host_Auth_Failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU cache is not enabled</td>
<td>SOCKET_CACHE_DISABLED</td>
<td>Cpu_Socket.Sock et_Cache.Disable d</td>
<td>SIO08.01.00 00001</td>
<td>3 (Error)</td>
<td>Enable the CPU cache in the server BIOS.</td>
</tr>
<tr>
<td>CPU cache size is not optimal</td>
<td>SOCKET_CACHE_SIZE_NOT_MAX_SIZE</td>
<td>Cpu_Socket.Sock et_Cache.SIZE_NOT_MAX_SIZE</td>
<td>SIO08.01.00 00002</td>
<td>3 (Error)</td>
<td>Check the CPU cache in the server BIOS, and set it to maximum size.</td>
</tr>
<tr>
<td>Unable to connect to ESRS Gateway</td>
<td>ESRS_CONNECTIVITY_ERROR</td>
<td>Esrs.Esrs.CONNE CTIVITY_ERROR</td>
<td>SIO10.01.00 00001</td>
<td>5 (Critical)</td>
<td>Check the network's connectivity to the ESRS Gateway.</td>
</tr>
<tr>
<td>The system is not registered with an ESRS gateway</td>
<td>ESRS_NOT_REGISTERED</td>
<td>Esrs.Esrs.NOT_REGISTERED</td>
<td>SIO10.01.00 00004</td>
<td>2 (Warning)</td>
<td>The system is not registered with an ESRS Gateway and will not send Alerts to EMC for monitoring. Contact your Support \ Sales representative to get an EMC ESRS support package.</td>
</tr>
<tr>
<td>ESRS number of messages received has been reached. No more messages</td>
<td>ESRS_REACHED_CAPACITY_LIMIT</td>
<td>Esrs.Esrs.REACHED_CAP</td>
<td>SIO10.01.00 00005</td>
<td>5 (Critical)</td>
<td>ESRS has a limit of receiving up to 200 alerts per 8 hours. The limit has been</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alert Message in GUI</td>
<td>Alert Message in REST</td>
<td>Alert Message in SNMP Trap</td>
<td>Alert Code (for ESRS)</td>
<td>Severity</td>
<td>Recommended Action</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>will be sent in the next 8 hours</td>
<td>AUTOMATIC_LOGS_COLLECT_DIRECTORY_ABOVE_HIGH_THRESHOLD</td>
<td>System. Automatic_Collect_Logs.REACHED_CAPACITY_LIMIT</td>
<td>SIO12.01.000003</td>
<td>2 (Warning)</td>
<td>Delete some files from the directory: (Linux) /opt/emc/scaleio/gateway/temp/scaleio-auto-collect-logs/ or (Windows) C:/Program Files/EMC/ScaleIO/Gateway\Temp\scaleio-auto-collect-logs</td>
</tr>
<tr>
<td>The automatic log collection directory is full</td>
<td>AUTOMATIC_LOGS_COLLECT_DIRECTORY_ABOVE_HIGH_THRESHOLD</td>
<td>System. Automatic_Collect_Logs.REACHED_CAPACITY_LIMIT</td>
<td>SIO12.01.000003</td>
<td>2 (Warning)</td>
<td>Delete some files from the directory: (Linux) /opt/emc/scaleio/gateway/temp/scaleio-auto-collect-logs/ or (Windows) C:/Program Files/EMC/ScaleIO/Gateway\Temp\scaleio-auto-collect-logs</td>
</tr>
<tr>
<td>There is not enough disk space to run automatic log collection</td>
<td>AUTOMATIC_LOGS_COLLECT_NOT_ENOUGH_DISK_SPACE</td>
<td>System. Automatic_Collect_Logs.NOT_ENOUGH_DISK_SPACE</td>
<td>SIO12.01.000004</td>
<td>5 (Critical)</td>
<td>Delete some files from your disk</td>
</tr>
<tr>
<td>SDC is disconnected from SDS</td>
<td>ONE_SDC_DISCONNECTED_FROM_ONE_SDS</td>
<td>System. SDC.One_Sdc_DISCONNECTED_From_One_Sds</td>
<td>SIO01.07.000001</td>
<td>5 (Critical)</td>
<td>Check the network links between the affected SDS and SDC</td>
</tr>
<tr>
<td>SDC is disconnected from the SDS IP address</td>
<td>ONE_SDC_DISCONNECTED_FROM_ONE_SDS_IP</td>
<td>System. SDC.One_Sdc_DISCONNECTED_From_One_Sds_IP</td>
<td>SIO01.07.000002</td>
<td>2 (Warning)</td>
<td>Check the network links between the affected SDC and SDS IP addresses</td>
</tr>
<tr>
<td>An SDC is disconnected from all SDSs</td>
<td>ONE_SDC_DISCONNECTED_FROM_ALL_SDS</td>
<td>System. SDC.One_Sdc_DISCONNECTED_From_All_Sds</td>
<td>SIO01.07.000003</td>
<td>5 (Critical)</td>
<td>Check the network links between the affected SDC and all SDSs.</td>
</tr>
</tbody>
</table>
Table 21 ScaleIO Alerts in SNMP, GUI, REST, and ESRS (continued)

<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>All SDCs are disconnected from the SDS</td>
<td>ALL_SDC_DISCONNECTED_FROM_ONE_SDS</td>
<td>System. SDC.All_Sdc_Disconnected_From_One_Sds</td>
<td>SIO01.07.00 00004</td>
<td>5 (Critical)</td>
<td>Check the network links between all SDCs and the affected SDS.</td>
</tr>
<tr>
<td>All SDCs are disconnected from the SDS IP address</td>
<td>ALL_SDC_DISCONNECTED_FROM_ONE_SDS_IP</td>
<td>System. SDC.All_Sdc_Disconnected_From_One_Sds_IP</td>
<td>SIO01.07.00 00005</td>
<td>2 (Warning)</td>
<td>Check the network links between all SDCs and the affected SDS IP address.</td>
</tr>
<tr>
<td>All SDCs are disconnected from all SDSs</td>
<td>ALL_SDC_DISCONNECTED_FROM_ALL_SDS</td>
<td>System. SDC.All_Sdc_Disconnected_From_All_Sds</td>
<td>SIO01.07.00 00006</td>
<td>5 (Critical)</td>
<td>Check the network links between all SDCs and SDSs.</td>
</tr>
<tr>
<td>Disconnected network links between SDCs and SDSs.</td>
<td>SDC_MULTIPLE_DISCONNECTIONS_FROM_SDS</td>
<td>System. SDC.Sdc_Multiple_Disconnections_From_Sds</td>
<td>SIO01.07.00 00007</td>
<td>5 (Critical)</td>
<td>Check the network links between all SDCs and SDSs.</td>
</tr>
<tr>
<td>This SDC has not been approved</td>
<td>SDC_NOT_APPROVED</td>
<td>System. SDC.Sdc_Not_Approved</td>
<td>SIO01.07.00 00008</td>
<td>2 (Warning)</td>
<td>Add the IP address for this SDC to the list of approved IP addresses.</td>
</tr>
<tr>
<td>This SDC does not have an approved IP address</td>
<td>SDC_DOES_NOT_HAVE_APPROVED_IPS</td>
<td>System. SDC.Sdc_Does_Not_Have_Approved_Ips</td>
<td>SIO01.07.00 00009</td>
<td>2 (Warning)</td>
<td>Update the list of approved IP addresses for this SDC.</td>
</tr>
<tr>
<td>SDC has an IP address that is not approved by the MDM</td>
<td>SDC_HAS_UNAPPROVED_IP</td>
<td>System. SDC.Sdc_Has_Unapproved_Ips</td>
<td>SIO01.07.00 00010</td>
<td>3 (Error)</td>
<td>Add the IP address for this SDC to the list of approved IP addresses.</td>
</tr>
<tr>
<td>Some of the the approved SDC IP</td>
<td>SDC_HAS_UNKNOWN_APPROVED_IP</td>
<td>System. SDC.Sdc</td>
<td>SIO01.07.00 00011</td>
<td>2 (Warning)</td>
<td>Right click the relevant SDC,</td>
</tr>
</tbody>
</table>
Table 21 ScaleIO Alerts in SNMP, GUI, REST, and ESRS (continued)

<table>
<thead>
<tr>
<th>Alert Message in GUI</th>
<th>Alert Message in REST</th>
<th>Alert Message in SNMP Trap</th>
<th>Alert Code (for ESRS)</th>
<th>Severity</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>addresses in the MDM are not recognized by AMS</td>
<td>_Has_Unknown_Approved_Ips</td>
<td>select "Configure Approved IP Addresses", and add the second data link IP address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configure SNMP properties after deployment

Configure SNMP trap properties after deployment. These procedures are mandatory for VMware-based systems where the SNMP feature is required. For other operating systems, configuration can be done either during deployment, or afterwards, using the instructions in this section.

The following procedures are required to enable the SNMP feature:

1. Creating a Lockbox
2. Configuring SNMP after deployment

Create a Lockbox

Create a Lockbox and add the MDM credentials. Lockbox is required for the following features: ESRS, SNMP, LDAPS.

Before you begin

The following items are required for the ESRS feature:

- ESRS Gateway v3 version 3.08 or higher must be installed and configured. It is recommended to create at least two ESRS Gateways and define them as cluster via the backend server.
- ESRS Gateway must be reachable from ScaleIO on port 9443.
- The ScaleIO license must be installed.

Ensure you have:

- One or more IP addresses of the ESRS gateway servers. Note that ESRS does not currently support IPv6.
- ESRS username and password.
- ScaleIO Gateway IP address, username, and password.
- MDM username and password.
- The ScaleIO Management IP address to be used as the Connect-In IP address. It must be an IP address that is accessible from the ESRS Gateway (for example, in case of NAT).

Use SioGWTool to configure a Lockbox. SioGWTool should be used to create a Lockbox only when a Lockbox has not yet been created.

A Lockbox can be created during installation with the Installation Manager (IM). For more information on creating a Lockbox during installation, see the Deployment Guide.
To use SioGWTool, input the appropriate path, based on your operating system, and append the commands to the end of the filepath:

- **Linux SioGWTool filepath:** /opt/emc/scaleio/gateway/bin/SioGWTool.sh
- **Windows SioGWTool filepath:** C:\Program Files\EMC\ScaleIO\Gateway\bin\SioGWTool.bat

Procedure

1. **Create a Lockbox:**

   ```
   <SioGWTool_PATH> --change_lb_passphrase --new_passphrase <NEW_PASSPHRASE>
   ```

Note

From system version 2.5 and later, the installation process will assign a random passphrase to this property, and it is highly recommended not to configure or use this property, because it could create a security breach.

Windows example:

   ```
   C:\Program Files\EMC\ScaleIO\Gateway\bin\SioGWTool.bat --set_mdm_credentials --mdm_user admin --mdm_password Scaleio123
   ```

2. **Add MDM credentials to the Lockbox:**

   ```
   <SioGWTool_PATH> --set_mdm_credentials --mdm_user <MDM_USERNAME> --mdm_password <MDM_PASSWORD>
   ```

Configuring SNMP after deployment

Configure Simple Network Management Protocol (SNMP) for error reporting, if it was not configured during installation.

Before you begin

Ensure that a LockBox has already been created and the MDM credentials have been added to it.

Enable the SNMP feature in the `gatewayUser.properties` file.

Procedure

1. **Use a text editor to open the `gatewayUser.properties` file, located in the following directory on the Installation Manager/Gateway server:**

 - **Linux:** /opt/emc/scaleio/gateway/webapps/ROOT/WEB-INF/classes
 - **Windows:** C:\Program Files\EMC\ScaleIO\Gateway\webapps\ROOT\WEB-INF\classes\

2. **Locate the parameter `features.enable_snmp` and edit it as follows:**

   ```
   features.enable_snmp=true
   ```
3. To add the trap receiver IP address, edit the parameter `snmp.traps_receiver_ip` as follows:

```plaintext
snmp.traps_receiver_ip <TRAP_IP_1>, <TRAP_IP_2>
```

The SNMP trap receivers’ IP address parameter supports up to two comma-separated or semi-colon-separated hostnames or IP addresses.

4. You can optionally change the following parameters:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp.sampling_frequency</code></td>
<td>The MDM sampling period. The default is 30.</td>
</tr>
<tr>
<td><code>snmp.resend_frequency</code></td>
<td>The frequency of resending existing traps. The default is 0, which means that traps are sent all the time.</td>
</tr>
</tbody>
</table>

5. Save and close the file.

6. Restart the scaleio-gateway service:
 - Linux: Run the command `service scaleio-gateway restart`
 - Windows: Restart the EMC Gateway service.

ScaleIO.mib file

The following text is the content of the `scaleio.mib` file.

Note

The object source identifier in the trap MDM.MDM_Cluster.SNMP_Server_Cannot_Connect_To_MDM is "NA".

```plaintext
SCALEIO-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Integer32 FROM SNMPv2-SMI DisplayString FROM RFC1213-MIB OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF emc FROM EMC-MIB;

scaleio MODULE-IDENTITY
LAST-UPDATED "201511060000Z"
ORGANIZATION "EMC Corporation"
CONTACT-INFO
"EMC Corporation
www.emc.com"
DESCRIPTION
"The Structure of Management Information for the EMC SCALEIO enterprise."
REVISION "201511060000Z"
DESCRIPTION
```
"Initial version of this MIB."
::= { emc 101 }

-- 1.3.6.1.4.1.1139.101.1
scaleioAlert OBJECT IDENTIFIER ::= { scaleio 1 }

-- 1.3.6.1.4.1.1139.101.1.1
scaleioAlertSeverity OBJECT-TYPE
SYNTAX Integer32
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"Severity of the event"
::= { scaleioAlert 1 }

-- 1.3.6.1.4.1.1139.101.1.2
scaleioAlertType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"Type of the alert"
::= { scaleioAlert 2 }

-- 1.3.6.1.4.1.1139.101.1.3
scaleioAlertSourceObjectId OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"Object id for which the alert was created"
::= { scaleioAlert 3 }

-- 1.3.6.1.4.1.1139.101.1.4
scaleioAlertActionCode OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
MAX-ACCESS accessible-for-notify
STATUS current
DESCRIPTION
"Action code of the alert"
::= { scaleioAlert 4 }

-- 1.3.6.1.4.1.1139.101.1.5
scaleioGroups OBJECT IDENTIFIER ::= { scaleioAlert 5 }

-- 1.3.6.1.4.1.1139.101.1.5.1
currentObjectGroup OBJECT-GROUP
OBJECTS { scaleioAlertSeverity,
 scaleioAlertType,
 scaleioAlertSourceObjectId,
scaleioAlertActionCode }
STATUS current
DESCRIPTION "scaleio-MIB-V2 OBJECT-GROUP."
 ::= { scaleioGroups 1 }

-- 1.3.6.1.4.1.1139.101.1.5.2
currentNotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS { scaleioAEAlert }
STATUS current
DESCRIPTION "scaleio-MIB-V2 NOTIFICATION-GROUP."
 ::= { scaleioGroups 2 }

scaleioAEAlert NOTIFICATION-TYPE
OBJECTS { scaleioAlertSeverity, scaleioAlertType,
scaleioAlertSourceObjectId, scaleioAlertActionCode }
STATUS current
DESCRIPTION "ScaleIO Alert"
 ::= { scaleio 2 }
END
SNMP Trap Support
The ScaleIO SDC can be installed on AIX servers.

This section describes items relevant to using AIX servers in the ScaleIO environment. Topics include:

- SAN virtualization layer ... 310
- SDC activities and monitoring ... 311
- Enable error logging on AIX servers .. 313
- Modify MDM IP address and GUID on AIX server 313
SAN virtualization layer

The MDM cluster manages the entire system. It aggregates the entire storage exposed to it by all the SDSs to generate a virtual layer - virtual SAN storage. Volumes can now be defined over the Storage Pools and can be exposed to the applications as a local storage device using the SDCs.

To expose the virtual SAN devices to your servers (the ones on which you installed and configured SDCs), perform the following:

- Define volumes. Each volume defined over a Storage Pool is evenly distributed over all members using a RAID protection scheme. By having all SDS members of the Storage Pool participate, ScaleIO ensures:
 - Highest and most stable and consistent performance possible
 - Rapid recovery and redistribution of data
 - Massive IOPS and throughput

You can define volumes as follows:

- Thick
 Capacity is allocated immediately, even if not actually used. This can cause capacity to be allocated, but never used, leading to wasted capacity.

 Thick capacity provisioning is limited to available capacity.

- Thin
 Capacity is “on reserve,” but not allocated until actually used. This policy enables more flexibility in provisioning.

 Whereas thick capacity is limited to available capacity, thin capacity provisioning can be oversubscribed, as follows:

 Maximum thin capacity provisioning = 5 * (gross capacity - used capacity)

 When capacity usage reaches the level where it may cause IO errors, alerts are generated. At certain higher capacity levels, volumes (even thin volumes) can no longer be created.

Example:

In a system with 3 SDSs, each with 10 TB, there are 30 TB of storage.

In the system, there is already a thick-provisioned volume that takes up 15 TB of the gross capacity (created by adding a 7.5 TB volume).

MDM will allow a total of 300 TB gross to be provisioned, and since 15 TB are already allocated, you can add a thin-provisioned volume of 285 TB gross (by adding a 142.5 TB volume) or a thick-provisioned volume of 15 TB gross.

- Map volumes. Designate which SDCs can access the given volumes. This gives rise to the following:

 - Access control per volume exposed

 - Shared nothing or shared everything volumes

 Once an SDC is mapped to a volume, it immediately gets access to the volume and exposes it locally to the applications as a standard block device. These block devices appear as /dev/sciniX where X is a letter, starting from “a.”

For example:
When a volume is defined on an AIX SDC, one device is created with the following pathnames:

- A block device, named /dev/scinidX...n, where X is a number, starting from "0."
- A raw device, named /dev/rscinidX...n, where X is a number, starting from "0."

In general, mapping SDCs to AIX raw devices will yield best performance. If you are using the device to create a filesystem, use the block device.

- The maximum amount of partitions for the scini disk is 15.

In a Windows environment, the device looks like any other local disk device, as shown in the Device Manager.

The maximum amount of volumes that can be mapped to an SDC is listed in the “Product limits” table.

Note

SDC mapping is similar to LUN mapping, in the sense that it only allows volume access to clients that were explicitly mapped to the volume.

This is the end of the system setup.

SDC activities and monitoring

Table 22 SDC activities and monitoring

<table>
<thead>
<tr>
<th>To do this</th>
<th>To view this</th>
<th>Use this CLI command</th>
<th>Use the GUI</th>
<th>Use the plug-in</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All SDCs query</td>
<td>query_all_sdc</td>
<td>Frontend > SDCs > select the SDC and display the Property Sheet</td>
<td></td>
<td>Used for viewing</td>
<td></td>
</tr>
<tr>
<td>Remove SDC</td>
<td>remove_sdc</td>
<td>Frontend > SDCs > right-click the SDC and select Remove</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rename an SDC</td>
<td>rename_sdc</td>
<td>Frontend > SDCs > right-click the SDC and select Rename</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add an MDM definition to an SDC (usually to add the SDC to an additional SIO system)</td>
<td>drv_cfg --add_mdm</td>
<td></td>
<td></td>
<td></td>
<td>The drvCfg command line is a local CLI utility that affects only the client on which the SDC is running (unlike the ScaleIO CLI which may affect the entire system). Refer to</td>
</tr>
<tr>
<td>Load an MDM configuration file to an SDC</td>
<td>drv_cfg --load_cfg_file</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To do this</td>
<td>To view this</td>
<td>Use this CLI command</td>
<td>Use the GUI</td>
<td>Use the plug-in</td>
<td>Notes</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Modify an existing MDM IP's address configured on an SDC</td>
<td></td>
<td>drv_cfg -- mod_mdm_ip</td>
<td></td>
<td></td>
<td>the user documentation for the correct usage.</td>
</tr>
<tr>
<td>Modify MDM IP addresses or GUID configured on an ESX-based SDC</td>
<td></td>
<td>esxcli system module parameters list -m scini</td>
<td></td>
<td></td>
<td>The esxcli command line is a local CLI utility used on an ESX server that affects only the client on which the SDC is running (unlike the ScaleIO CLI, which may affect the entire system). Refer to the utility documentation for the correct usage.</td>
</tr>
<tr>
<td>Query GUID and MDM IP addresses on an ESX-based SDC</td>
<td></td>
<td>esxcli system module parameters list -m scini</td>
<td></td>
<td></td>
<td>Note GUIDs are automatically configured, and modifying them is recommended only for troubleshooting purposes.</td>
</tr>
<tr>
<td>Query SDC state on an ESX-based SDC</td>
<td></td>
<td>esxcli system module list</td>
<td>grep scini</td>
<td></td>
<td>Note SDC query</td>
</tr>
<tr>
<td>Abort SDC removal</td>
<td></td>
<td>abort_remove_sdc</td>
<td></td>
<td></td>
<td>SDC query</td>
</tr>
<tr>
<td>Query all active tgt objects</td>
<td></td>
<td>drv_cfg -- query_tgts</td>
<td></td>
<td></td>
<td>The drv_cfg command line is a local CLI utility that affects only the client on which the SDC is running (unlike the ScaleIO CLI which may affect the entire system). Refer to the user documentation for the correct usage.</td>
</tr>
<tr>
<td>Query GUIDs</td>
<td></td>
<td>drv_cfg -- query_guid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Query to determine to which MDM an SDC is connected</td>
<td></td>
<td>drv_cfg -- query_mdms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enable error logging on AIX servers

Enable error logging in AIX servers to enhance troubleshooting.

ScaleIO reports errors, diagnostic messages, and failover recovery messages through the syslog file specified by the administrator.

To log messages in /var/log/messages:

Procedure

1. Add the following entry to the /etc/syslog.conf file:

 `*.debug /var/log/messages`

 You can also configure /etc/syslog.conf to rotate the log file. For example, to rotate the file daily, keep one week's worth of files, and compress files to save space, add the following entry:

 `*.debug /var/log/messages rotate files 7 time 1d compress`

2. Create the /var/log/messages file:

 `touch /var/log/messages`

3. Enable logging:

 `refresh -s syslogd`

Results

Logging is enabled.

Modify MDM IP address and GUID on AIX server

When SDC is running on an AIX server, you can modify the MDM IP addresses and GUIDs.

GUIDs are assigned automatically, and modifying them should be done with utmost caution.

Procedure

1. Modify the MDM IP address or GUID.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent</td>
<td>Run this command:</td>
</tr>
<tr>
<td></td>
<td><code>chdev -l scini -a "mdm_ip[1..4]=<<MDM_CLUSTER_IPS>>"</code></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| | Where \textit{mdm_ip \{1..4\}} is the cluster number to add or change and \textit{MDM_CLUSTER_IPS} is a comma-separated list.
Examples:
To add a new MDM cluster to a newly-installed SDC, with no previous MDM IP addresses assigned:
\texttt{chdev -l scini -a \"mdm_ip1=1.1.1.1,2.2.2.2\"}
To add an additional MDM cluster to an SDC:
\texttt{chdev -l scini -a \"mdm_ip2=3.3.3.3,4.4.4.4\"}
To change the MDM IP addresses of a previously-added cluster:
\texttt{chdev -l scini -a \"mdm_ip1=5.5.5.5,6.6.6.6\"}
To remove the second cluster:
\texttt{chdev -l scini -a \"mdm_ip2=\"} |

Results
A

Active Directory
Active Directory (AD) provides directory-based identity-related services. It maintains a directory that is used to centrally store identity information and security principles, and uses them to authenticate and authorize users and devices.

Active Forward Rebuild
A copy of stored data is currently being rebuilt on another server, due to planned or unplanned shutdown of a server.

B

Backward Rebuild
Data is rebuilt on servers that went offline and became active again. Forward rebuilds can take a long time, and therefore, it can be quicker to restore and update the data on a server which has come back online, than it is to do an entire rebuild on a different server.

BWC
Bandwidth counters.

C

Cache
Cache is random access electronic storage used to retain frequently used data for faster access by the channel. Cache is a critical aspect of storage performance. ScaleIO uses server DRAM for Read RAM Cache (RMcache) as well as SSD/Flash devices (RFcache) for caching reads. ScaleIO cache uses recently-accessed (LRU) data readily available to manage caching. I/Os read from cache have a lower response time than I/Os serviced by the drives. In addition, cached I/Os reduce the data drive workload, which in many cases is a performance bottleneck in the system.

CacheCade
Read and Write caching of storage devices performed by one or more designated SSD devices in the ScaleIO system.

Cache Hit Rate
The percentage of I/Os from cache.

Cache Skip
Data is written directly to storage, bypassing the cache. Reasons for cache skips include: I/Os were too large, the cache device was busy, or I/Os were unaligned. The cache can also be configured to always work in passthrough mode.

Cache Writes Handling Mode
The caching write-mode used by the system: passthrough mode (writes to storage only), or cached mode (by default, writes both to cache and to storage).

Cluster Mode
ScaleIO is controlled by a cluster of MDM nodes, minimally consisting of a Master MDM, Slave MDM, and a Tie Breaker node. 5-node clusters consist of one Master MDM, two Slave MDMs, and two Tie Breakers.
D

Degraded Capacity The capacity is available, but is not protected in case of another failure

Device Physical storage device, such as a flash drive, or magnetic disk

DirectPath In ScaleIO documentation, we use the term DirectPath to refer to the VMware vSphere VMDirectPath I/O feature.

DRL Dirty Region Logging: DRL bits indicate if data is in-writing to a certain location. Once the data is written in both primary and secondary locations, the DRL bit associated with the written location is cleared. These bits can be either stored in DRAM only (memory_only) or also backed up in non-volatile memory (hardened). The former delivers better I/O performance; the latter reduces data movement following a power-cycle giving rise to a faster rebuild.

F

Failed Capacity The capacity is inaccessible due to a failure, and data integrity is at risk

Fault Sets A logical entity that ensures that SDS data is backed up on SDSs that belong to other Fault Sets, thus preventing double-point-of-failure scenarios if rack power outages occur.

Forward Rebuild Data in storage will be rebuilt on another server, due to planned or unplanned shutdown of a server.

I

ID Identifier, a unique sequence of characters that identifies an object in the system. In some CLI commands, an ID can be used to specify a system component.

IP Role The role of the IP address configured for an SDS. Each SDS can have several IP addresses associated with it. Each IP address can serve a different purpose, or role. IP roles include: SDS, SDC, or both SDS and SDC.

L

LDAP The Lightweight Directory Access Protocol (LDAP) is a directory service protocol that runs on a layer above the TCP/IP stack. It provides a mechanism used to connect to, search, and modify Internet directories using Client-Server architecture. In ScaleIO, LDAP is the protocol used by the MDM to communicate with Active Directory (AD) for authentication purposes.

Lockbox Lockbox is a component of the RSA Common Security Toolkit (CST) which securely stores data (such as passwords) in an encrypted file. A lockbox must be defined for LDAP (secure LDAP), SNMP, and ESRS. For LDAP, lockbox use is optional.
M

Management IPs
The IP addresses of the MDMs defined in the system that can be used to access the MDM from CLI, GUI and REST.

Management Port
The Port number used by the MDM for purposes of communicating with the nodes in the ScaleIO network.

Manager MDM
An MDM that can act as a Master or a Slave in the cluster. Manager MDMs have a unique system ID, and can be given unique names. A manager can be a standby or a member of the cluster.

Master MDM
The MDM in the cluster that controls the SDSs and SDCs.

MDM
Any server with the MDM package installed on it. An MDM can be given a Manager or a Tie Breaker (default) role, during installation. MDMs have a unique MDM ID, and can be given unique names.

P

Page Size
The page size, typically in KB, used for caching purposes by Read Flash Cache.

Pass-Through Mode
Data is passed through to or from storage devices without being cached by Read Flash Cache.

Pending Backward Rebuild
A backward rebuild is waiting in a queue, and will be performed when possible, according to rebuild throttling policy.

Primary MDM
See Master MDM.

Protected Capacity
Capacity that has an accessible copy in the system, in case of failure.

Protection Domain
A unique set of SDSs grouped together for reliability and tenancy separation.

R

RAM Read Cache (RMcache)
Server RAM that is reserved for caching storage devices in a Storage Pool.

Read Flash Cache (RFcache)
Read-only caching of storage devices performed by one or more designated SSD devices and PCIe flash devices in a ScaleIO system.

Rebalance
When ScaleIO detects lopsided use of storage capacity, or when new nodes are added, it redistributes data across the nodes, in order to improve performance.

Rebuild
When ScaleIO detects a failure in the network, it creates a new copy of the data from the failed component, in a new location, to ensure data integrity.

Restricted MDM Mode
A mode set in which commands can only be performed from an MDM machine.

Restricted SDC Mode
Only approved SDCs can access the MDM. When this mode is enabled, volumes can only be added to approved SDCs.
The ScaleIO Debugger is a ScaleIO tech support troubleshooting tool, used to investigate for "live" systems that retrieves internal information from different ScaleIO components.

ScaleIO Data Client, a lightweight device driver that exposes ScaleIO volumes as block devices to the application residing on the same server on which the SDC is installed.

ScaleIO Data Server, which manages the capacity of a single server and acts as a back-end for data access. The SDS is installed on all servers contributing storage devices to the ScaleIO system.

Secondary MDM

See Slave MDM.

Single Mode

A single MDM manages the ScaleIO network. This mode has no backup protection, and should not be used in production environments.

Slave MDM

An MDM in the cluster that is ready to take over the Master MDM role if ever necessary.

Snapshot Capacity

The amount of capacity occupied by snapshots of volumes.

Spare Capacity

Capacity that is reserved for system use, when recovery from failure is required. This capacity cannot be used for storage purposes.

Spare Percentage Policy

This policy determines the amount of capacity that must always be reserved as free space.

Standby MDM

An MDM node that is ready to use, with an ID, that has been locked to a specific ScaleIO system.

Storage Pool

A sub-set of physical storage devices in a Protection Domain. Each storage device can only belong to one Storage Pool. User volumes will always use the storage of a single Storage Pool.

Thick Capacity

Capacity allocated for thick volumes.

Thick Provisioned Volume

In virtual storage, thick provisioning is a type of storage allocation in which the amount of storage capacity on a disk is pre-allocated on physical storage at the time the disk is created, meaning that the volume has all its capacity pre-allocated on creation.

Thin Capacity

Capacity allocated for thin volumes.

Thin Provisioned Volume

Thin provisioning is a method of optimizing the efficiency with which the available space is utilized in storage area networks (SAN). Thin provisioning operates by allocating disk storage space in a flexible manner among multiple users, based on the minimum space required by each user at any given time.
Throttling Throttling controls resource prioritization for rebuild and rebalance processes. Throttling can be controlled per Protection Domain or per Storage Pool (by configuring rebuild and rebalance policies).

Tie Breaker The Tie Breaker (TB) is an MDM that does not have a manager role, whose sole purpose is to help determine which MDM module is the manager that will become the master MDM and take control over the ScaleIO cluster.

The Tie Breaker ensures that there will always be one Master MDM achieving cluster quorum. In a 3-node cluster, there is one TB; in a 5-node cluster, there are two TBs.

Unavailable Capacity Capacity that is not being used, but is also unavailable (due to server outage).

Unused Capacity Capacity that is not currently being used for any purpose in the system.

Volume A general term referring to a storage device. In the ScaleIO system, a volume consists of multiple blocks spread evenly on Storage Pool devices.

Widget The full screen view can be minimized into a widget, which is a small window that floats on your screen, over other applications. Property sheets can also be minimized into widgets.

Write Misses Write requests that were not found in cache