EMC XTREMCACHE ACCELERATES MICROSOFT SQL SERVER

EMC XtremSF, EMC XtremCache, EMC VNX, Microsoft SQL Server 2008

- XtremCache dramatically improves SQL performance
- VNX protects data

EMC Solutions

Abstract

This white paper describes how EMC® XtremCache™ with EMC VNX® accelerates online transaction processing (OLTP) performance in a Microsoft SQL Server 2008 environment.

December 2013
Table of contents

Executive summary ... 4
Business case .. 4
The storage performance challenge ... 4
The XtremCache solution .. 5
 Server-side flash caching for maximum speed .. 5
 Write-through caching to the array for total protection ... 6
 Application agnostic .. 6
 Shareable and scalable ... 7

Solution architecture ... 8
 Introduction ... 8
 Physical architecture ... 8
 EMC VNX ... 8

XtremCache with Microsoft SQL Server: testing and validation .. 9
 Introduction ... 9
 Workload profile ... 9
 Recommended configurations .. 9
 Performance characteristics ... 9

Conclusion .. 12

References .. 13
 White papers ... 13
 Product documentation .. 13
Executive summary

Business case

In an increasingly competitive environment, businesses are being driven to optimize business processes and to improve service, while lowering IT costs. Meeting these new requirements has become critical to the financial success of many companies. Consequently, operational and revenue-generating applications are experiencing dramatic demands on performance, driven by:

- Growth in the numbers of active users
- Time-critical applications and escalating service level agreements
- Increased complexity of business processes and new analytic workloads
- Multiple databases with high concurrent access

Businesses need to consider new approaches to performance challenges in order to meet these demands cost effectively and without sacrificing data protection.

The storage performance challenge

The latest servers with multi-core processors represent a potential performance bottleneck for the storage subsystem. As processing capacity and heavier workloads are added, the storage system is challenged to keep pace with the growing I/O demands. While CPU performance improves 100-fold every decade, magnetic disk remains relatively flat, as shown in Figure 1.

![Figure 1. CPU performance versus disk drives](image)

In a traditional architecture, as shown in Figure 2:

- Reads and writes are serviced by the storage array
- Performance varies depending on the back-end array’s media, workload, and network
What if you could double your application performance by decreasing latency and increasing IOPS and transactions per minute?

The XtremCache solution

Server-side flash caching for maximum speed

EMC® XtremCache™ is a server flash caching solution that uses intelligent caching software and PCIe flash technology to reduce latency and increase throughput, which dramatically improves application performance.

XtremCache software caches the most frequently used data on the server-based PCIe card, thereby putting the data closer to the application, as shown in Figure 3. This reduces the need to access data across the network from the storage array, which both decreases response time and increases performance.
XtremCache caching optimization automatically adapts to changing workloads by determining which data is most frequently referenced and promoting it to the server flash cache. This means that the “hottest” data automatically resides on the PCIe card in the server for faster access.

As shown in Figure 4, the XtremCache advanced architecture combines accelerated performance with data protection:

- Reads are serviced by XtremCache for performance
- Writes are passed through to the storage array for protection

![Advanced architecture with EMC XtremCache](image)

Figure 4. Advanced architecture with EMC XtremCache

XtremCache provides better performance for read-intensive applications. In this test, XtremCache demonstrated a throughput improvement, measured in transactions per minute, of 260 percent and an 87 percent reduction in read latency. XtremCache works with applications as diverse as databases, analytics, enterprise application servers, email, and web servers to give them the performance boost they need.

XtremCache enhances both virtualized and bare-metal applications so you can smoothly migrate your data center to a private cloud at a pace that makes sense for your business.

Write-through caching to the array for total protection

XtremCache protects data by using a write-through algorithm, which means that writes persist to the back-end storage array. EMC trusted networked storage, such as EMC Symmetrix® VMAX® and the EMC VNX® family of storage arrays, protect data with advanced data services, which include high availability, data integrity, reliability, and disaster recovery.

Application agnostic

XtremCache is transparent to applications, so no rewriting, retesting, or recertification is required to deploy XtremCache in your environment.

While this white paper focuses on Microsoft SQL Server 2008, the XtremCache architecture can directly enhance the performance of many other applications and

1 XtremCache is not supported in shared disk environments or active/active clusters.
indirectly enhance write-intensive applications that now have greater access to SAN resources.

Shareable and scalable

While directly enhancing the performance of read-intensive applications, XtremCache can indirectly enhance write-intensive applications that now have greater access to SAN resources.

XtremCache offloads much of the read traffic from the storage array, which allows it to allocate greater processing power to other applications. While one application is accelerated with XtremCache, the array’s performance for other applications is maintained or even slightly enhanced. As XtremCache is installed on more servers in the environment, the result is a highly scalable I/O processing model. The environment as a whole, including the servers and the storage system, is capable of processing increasingly more IOPS.

For more information about XtremCache, refer to *Introduction to EMC XtremCache*.
Solution architecture

Introduction
This section provides an overview of the physical architecture of this solution.

Physical architecture
Figure 5 shows the physical architecture for this solution.

Database server platform
- Cisco UCS C-460 server with 32 cores
- XtremSF & XtremCache

Microsoft SQL Server platform
- Microsoft SQL Server 2008

EMC VNX5300
- Storage pool for data
- Storage pool for logs

Figure 5. EMC XtremCache with Microsoft SQL Server and VNX5300

The solution architecture consists of a Microsoft SQL Server 2008 R2, Cisco server, and a VNX storage array. The solution can be configured with various storage arrays, such as EMC Symmetrix VMAX® or VNX. In this solution, we used EMC VNX5300. The server used for this test configuration was Cisco UCS C-460/M1 rack mount with four Xeon X7560 processors and a total of 32 cores. The server configuration included the XtremCache server-based flash cache and two 8 Gb/s connections to the SAN switches.

EMC VNX
The EMC VNX family delivers innovation and enterprise capabilities for file, block, and object storage in a scalable, easy-to-use solution. This storage platform combines powerful and flexible hardware with advanced efficiency, management, and protection software to meet the demanding needs of today's businesses.

The VNX series is designed to meet the high-performance, high-scalability requirements of midsize and large businesses.

VNX and EMC VNXe® are supported by XtremCache when used for block storage access.
XtremCache with Microsoft SQL Server: testing and validation

Introduction
EMC tested the capabilities of XtremCache to accelerate online transaction processing (OLTP) performance in a Microsoft SQL Server 2008 environment. This section presents the results of the testing.

Note: Benchmark results are highly dependent upon workload, specific application requirements, and system design and implementation. Relative system performance will vary as a result of these and other factors. Therefore, this workload should not be used as a substitute for a specific customer application benchmark when critical capacity planning and/or product evaluation decisions are contemplated.

Workload profile
EMC testing used a standard TPC-E-like OLTP workload, with a 750 GB database and a 90/10 percent read/write mix. We took a performance baseline to validate the performance characteristics of the environment. We then enabled XtremCache and took measurements of transactions per second and application-level transaction latency to demonstrate the performance contribution of XtremCache to the application.

Recommended configurations
XtremCache is enabled on all of the data LUNs. However, XtremCache was not enabled on the log LUNs because they are dominated by writes.

No specific tuning was required for Microsoft SQL Server.

With this configuration, XtremCache uses its caching algorithms to automatically maintain a copy of the hottest data for immediate access.

Performance characteristics
Figure 6 compares the overall system throughput (transactions per second) of the baseline and XtremCache-enabled environments. The availability of the hot data in the server’s XtremCache resulted in a 260 percent improvement in transactions per second.
As TPS performance improved by a factor of 3.6, there was an 87 percent reduction in read latency, as shown in Figure 7.

XtremCache copies and stores the hottest read data on the PCIe card within the server. This data can be repeatedly read by the application without sending the I/O request to the back-end storage. In a workload with a 90/10 percent read/write mix, this results in an overall average transaction latency decrease of 87 percent.

It is important to note that individual customers might see different results. Improvements in application performance depend on a variety of factors, including:

- I/O read to write ratio
- Inherent scalability of the workload
- Existing constraints within the storage subsystem, before deploying XtremCache
- Tuning of the database
- Sharing of XtremCache with other applications
Conclusion

Our testing with a Microsoft SQL Server OLTP workload compared a system equipped with XtremCache against a baseline configuration without XtremCache. The XtremCache-equipped server demonstrated the following performance advantages:

- System throughput, measured in transactions per second, was 3.6 times the throughput of the baseline without any changes to applications.
- Overall transaction latency was 87 percent less than the baseline.
- XtremCache maintained the integrity and protection of the data.
References

White papers
For additional information, see the white papers listed below:

- *Introduction to EMC XtremCache*
- *EMC XtremCache Accelerates Oracle—EMC XtremSF, EMC XtremCache, EMC VNX, EMC Fast Suite, Oracle Database 11g*
- *EMC XtremCache Accelerates Oracle—EMC XtremSF, EMC XtremCache, EMC Symmetrix VMAX and VMAXe, Oracle Database 11g*
- *EMC XtremCache Accelerates Virtualized Oracle—EMC XtremSF, EMC XtremCache, EMC Symmetrix VMAX and VMAXe, VMware vSphere, Oracle Database 11g*

Product documentation
For additional information, see the product documents listed below:

- *EMC XtremCache Data Sheet*
- *EMC VNX Family Data Sheet*