Handle more orders with faster response times, today and tomorrow

The Dell EMC VxRail P470F handled up to 177% more database work with up to 85% faster response times compared to the HPE SimpliVity 380

Databases are often the driving force behind a company’s mission-critical work. They power online stores, confidential records, and customer management systems, so a solution that sustains high levels of database work can be a big advantage as your company grows.

We found that the Dell EMC™ VxRail™ P470F hyperconverged appliance powered by VMware vSAN™ enables more database work than the HPE SimpliVity 380 with OmniStack. With a workload of 18 virtual machines (VMs), the four-node Dell EMC solution processed up to 104 percent more orders per minute (OPM) with up to 81 percent faster response times, so more users can fulfill requests quicker—whether they’re placing orders in a store, accessing databases of client info, or adding to company records.

The Dell EMC VxRail P470F sustained this strong performance even after we doubled the number of virtual machines, processing 177 percent more OPM with up to 85 percent faster response times, so it can keep meeting your needs as your business and its services expand. With this powerful, scalable hyperconverged solution, you can support more users with strong performance, now and in the future.
Handle more orders with ease

If your company relies on databases, you want them to be able to support a large number of simultaneous users. When we tested the two solutions with 0 ms think time, the Dell EMC VxRail solution handled 104 percent more OPM and delivered 66 percent more input/output operations per second (IOPS) than the HPE solution. After we upped the think time to 50 ms to simulate a more realistic scenario, the Dell EMC VxRail solution maintained an advantage, delivering 43 percent more OPM and 12 percent more IOPS. (To learn more about think time, see “Think time and why it matters” below.)

Together, these results show that the Dell EMC VxRail solution can process more database work than the HPE solution in the same amount of time. Depending on your business, you may have staff members relying on databases of constantly changing client information. Or perhaps you’ve got thousands of customers attempting to research and purchase your products. No matter what you use your databases for, when your hardware can handle more hits to your databases, it almost certainly means smoother business operations.

Think time and why it matters

If DS2 simulates customers shopping in an online store, think time is the amount of time between operations taken by multiple users accessing the store at the same time. We set this metric each time we run a test.

A think time of 0 ms gives us the maximum OPM a solution can deliver, making it a useful metric if you want to measure a solution’s highest possible performance. A 0ms think time is virtually impossible in the real world, however, because it is rare to have a long period of time in which one action always follows the previous action instantaneously. For this reason, we also tested with a think time of 50 ms, simulating a more realistic scenario. Though results from this test yielded lower total numbers of OPM and IOPS, they are a more realistic representation of how each solution might perform in the real world.
Fast response times for your staff and customers

For the users accessing your databases, fast response times are key. Customers are likely to leave your site if the pages they’re seeking won’t load, which can directly translate to lost revenue. Slow response times affect your internal operations, too. Want a recipe for a frustrated, unproductive employee? Try forcing them to wait every time they update the database they use throughout each day.

The Dell EMC VxRail solution offered up to 81 percent faster response times than the HPE solution (see chart above). In both the 0ms and 50ms think time test scenarios, the Dell EMC VxRail P470F achieved significantly lower read and write latencies. Users expect an immediate response from their databases—and technology in general—and those fractions of seconds can pile up to make a big difference in user experience and productivity.

Defining hyperconverged systems

Both of the solutions we tested in this study are hyperconverged systems, which combine servers, storage, and networking into a single hardware stack controlled by software. These space-efficient platforms can break down traditional silos and reduce administrative burden, allowing fewer technical staff members to perform everyday management tasks, which makes them ideal for regional offices or remote locations. Because the entire system is modular and software-controlled, it should require minimal work to scale out by adding more hardware nodes.
Double your workload and maintain strong performance

As your business grows and adds new products and services, you may need your database hardware to handle more work while continuing to offer a great experience for customers. Ideally, you want your solution to scale performance linearly; if your solution can handle only a little more work after you increase its workload, it’s a bad sign for the solution’s ability to handle your company’s work moving forward.

To see how the solutions dealt with an expanded workload, we doubled the VM count from 18 to 36 VMs on both solutions, keeping think time at 50 ms to simulate a more real-world experience. Both solutions were able to do more work, but the performance of the Dell EMC VxRail P470F jumped dramatically, reaching close to linear scaling, while that of the HPE solution rose a comparatively small amount. The Dell EMC VxRail solution’s advantage was most pronounced in this scenario. It handled 177 percent more orders and 121 percent more IOPS than the HPE solution. This proves that even as you increase the load on the Dell EMC VxRail, it can continue making quick work of your database requests.

![Dell EMC VxRail P470F and HPE SimpliVity 380 performance comparison](image)

The fast, flexible Dell EMC VxRail P470F

The Dell EMC VxRail P470F is a single-node, 2U appliance built on Dell EMC PowerEdge™ server technology. When you order your Dell EMC VxRail system, you can choose the specific configuration that fits your needs. The solution we tested utilized four nodes, but as your business needs change, you can link up to 64 nodes.

VMware technologies control the entire stack, enabling straightforward management and resource allocation. According to Dell EMC, the VxRail appliance family “are the only hyper-converged infrastructure appliances jointly engineered with VMware.”

For more information on the Dell EMC VxRail P470F, visit DellEMC.com/VxRail.
The Dell EMC solution also maintained its advantage in response times, offering up to 85 percent faster response times than the HPE solution. Though latencies were higher than they were in our tests with 18 VMs, both read and write latencies consistently remained under 10 ms for the Dell EMC VxRail solution. The HPE solution’s response times, on the other hand, were over 10 ms for both read and write, with write latencies reaching over 63 ms. If you’re trying to give your users a smooth, positive shopping and working experience, slow response times get in the way.

Both the Dell EMC VxRail P470F and HPE SimpliVity offered inline compression and deduplication capabilities that permitted them to store data more efficiently. The Dell EMC solution consistently delivered an inline deduplication/compression ratio of over 2x, with the ratio reaching 3.48x when we scaled up to 36 VMs. The HPE solution provided an even stronger deduplication/compression ratio of 12.4x. That efficiency came at a cost, however: as we’ve already showed, HPE SimpliVity could not sustain the same level of database performance as the Dell EMC VxRail P470F.

Our test tool: DVD Store 2

To create a real-world database workload, we used DVD Store Version 2.1 (DS2). DS2 models an online store where customers log in, search for products, and make purchases. It reports these actions by showing how many orders per minute the system can handle, which in turn shows you what kind of performance you could expect for your customers. DS2 also performs other actions, such as adding new customers, to exercise the wide range of database functions you might need.

To learn more about DS2, see http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store.
To download DS2, see https://github.com/dvdstore.
Maintain robust performance, now and in the future

Databases power your business, so the performance of the hardware behind your databases is crucial. In our datacenter, the Dell EMC VxRail P470F powered by VMware vSAN handled more orders per minute, delivered higher IOPS, responded more quickly, and scaled up with stronger performance than the HPE SimpliVity with OmniStack. These differences translate to real-world benefits. With the Dell EMC VxRail solution, you can achieve shorter wait times for customers and staff, which could increase sales and innovation at your company, and handle more database work on both smaller and larger workloads, so you can grow your business with confidence.

To find out more about the Dell EMC VxRail P470F, visit DellEMC.com/VxRail.

On March 17, 2017, we finalized the Dell EMC hardware and software configurations we tested. We concluded hands-on testing on the Dell EMC solution on May 15, 2017.

On June 14, 2017, we finalized the HPE hardware and software configurations we tested. We concluded hands-on testing on the HPE solution on July 4, 2017.

Updates for current and recently released hardware and software appear often, so unavoidably these configurations may not represent the latest versions available when this report appears.

Appendix A: Test configuration and benchmark

About our Microsoft® SQL Server® database configuration

For the first part of our testing, we set up a mixed workload environment with 18 virtual machines and three different database sizes; six small (25GB) databases, six medium (100GB) databases, and six large (250GB) databases.

We created six new small database VMs, installed Microsoft SQL Server 2016 on the VMs, and configured the VMs with 12 GB of RAM and four vCPUs. Each VM had a 40GB virtual disk, on which we installed Windows Server® 2016 and the database software, and a 10GB virtual disk for TempDB and TempLog files. We then added a 55GB VMDK to each VM to hold the database data files, and a 25GB VMDK to store the database log files.

Then, we created six new medium database VMs, installed Microsoft SQL Server 2016 on the VMs, and configured the VMs with 50 GB of RAM and six vCPUs. Each VM had a 40GB virtual disk, on which we installed Windows Server 2016 and the database software, and a 10GB virtual disk for TempDB and TempLog files. We then added a 185GB VMDK to each VM to hold the database data files, and a 40GB VMDK to store the database log files.

Then, we created six new large database VMs, installed Microsoft SQL Server 2016 on the VMs, and configured the VMs with 128 GB of RAM and eight vCPUs. Each VM had a 40GB virtual disk, on which we installed Windows Server 2016 and the database software, and a 10GB virtual disk for TempDB and TempLog files. We then added two 220GB VMDKs to each VM to hold the database data files, and one 95GB VMDK to store the database log files.

Finally, we used DS2’s data-generation tool to create the initial database schemas. We used database size parameters of 25GB, 100GB, and 250GB in DS2’s workload generator to create approximately 25 GB, 100 GB, and 250 GB of data. We then imported those databases into Microsoft SQL Server VMs to create the indexes. For details, including the DS2 configuration files, see Appendix B.

For the scale-up portion of the testing, we doubled the virtual machine count to 36: 12 small 25GB databases, 12 medium 100GB databases, and 12 large 250GB databases. We followed the same procedures to create and configure these virtual machines. The small 25GB database each VMs had 12GB RAM, 4 vCPUs, a 55GB VMDK to hold the database data files, and a 25GB VMDK to store the database log files. The medium 100GB database VMs each had 50GB RAM, 6 vCPUs, a 185GB VMDK to hold the database data files, and a 40GB VMDK to store the database log files. The large 250GB database VMs each had 128GB RAM, 8 vCPUs, two 220GB VMDK to hold the database data files, and a 95GB VMDK to store the database log files.

For each VM we also followed SQL best practices for formatting the Windows NTFS volumes. We set the allocation unit size for each OS NTFS volume to 8K, and 64K for each data and log volume.

About Microsoft SQL Server 2016

According to Microsoft, “SQL Server 2016 is the biggest leap forward in Microsoft data platform history. Gain real time insights across your transactional and analytical data with a scalable database platform that has everything built in, from unparalleled in-memory performance, new security innovations and high availability, to advanced analytics that make mission-critical applications intelligent.”

Appendix B: System configuration information

<table>
<thead>
<tr>
<th>System configuration information</th>
<th>Dell EMC VxRail P470F (four-node cluster)</th>
<th>HPE SimpliVity 380 (four-node cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS name and version</td>
<td>Dell EMC VxRail P470F 2.2.5</td>
<td>HP ProLiant System Bios P89 v2.30</td>
</tr>
<tr>
<td>Operating system name and version/build number</td>
<td>VMware ESXi™, 6.0.0, 5050593</td>
<td>VMware ESXi, 6.0.0, 4600944</td>
</tr>
<tr>
<td>Date of last OS updates/patches applied</td>
<td>03/13/2017</td>
<td>05/22/2017</td>
</tr>
<tr>
<td>Power management policy</td>
<td>Performance</td>
<td>Custom</td>
</tr>
<tr>
<td>Processor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of processors</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vendor and model</td>
<td>Intel® Xeon® E5-2699 v4</td>
<td>Intel Xeon E5-2699 v4</td>
</tr>
<tr>
<td>Core count (per processor)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Core frequency (GHz)</td>
<td>2.20</td>
<td>2.20</td>
</tr>
<tr>
<td>Stepping</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Memory module(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total memory in system (GB)</td>
<td>1,536</td>
<td>1,536</td>
</tr>
<tr>
<td>Number of memory modules</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Vendor and model</td>
<td>Hynix HMAA8GL7MMR4N-UH</td>
<td>Hynix HMAA8GL7MMR4N-UH</td>
</tr>
<tr>
<td>Size (GB)</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Type</td>
<td>PC4-2400T</td>
<td>PC4-2400T</td>
</tr>
<tr>
<td>Speed (MHz)</td>
<td>2,400</td>
<td>2,400</td>
</tr>
<tr>
<td>Speed running in the server (MHz)</td>
<td>2,133</td>
<td>2,400</td>
</tr>
<tr>
<td>Storage controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor and model</td>
<td>Dell HBA330 Mini</td>
<td>Avago MegaRAID SAS 9361-81</td>
</tr>
<tr>
<td>Cache size (GB)</td>
<td>0</td>
<td>2048</td>
</tr>
<tr>
<td>Firmware version</td>
<td>09.17.20.07</td>
<td>4.52</td>
</tr>
<tr>
<td>Driver version</td>
<td>10.00.03.00-1OEM.600.0.0.2768847</td>
<td>5.5.0.100-1OEM.550.0.0.1331820</td>
</tr>
<tr>
<td>Local storage (caching tier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of drives</td>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>Drive vendor and model</td>
<td>Dell HUSMM1680ASS204</td>
<td>N/A</td>
</tr>
<tr>
<td>Drive size (GB)</td>
<td>800GB</td>
<td>N/A</td>
</tr>
<tr>
<td>Drive information (speed, interface, type)</td>
<td>12 Gb/s, SAS, SSD</td>
<td>N/A</td>
</tr>
<tr>
<td>Local storage (storage tier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of drives</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Drive vendor and model</td>
<td>Dell HUSMR1619ASS204</td>
<td>HP MK001920GWCFB</td>
</tr>
<tr>
<td>Drive size (GB)</td>
<td>1.92</td>
<td>1.92</td>
</tr>
<tr>
<td>Drive information (speed, interface, type)</td>
<td>12 Gb/s, SAS, SSD</td>
<td>6 Gb/s, SATA, SSD</td>
</tr>
<tr>
<td>System configuration information</td>
<td>Dell EMC VxRail P470F (four-node cluster)</td>
<td>HPE SimpliVity 380 (four-node cluster)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Network adapter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor and model</td>
<td>Intel Ethernet 10G X520/I350</td>
<td>HP Ethernet 10Gb 560FLR-SFP+</td>
</tr>
<tr>
<td>Number and type of ports</td>
<td>2 x 10 Gb, 2 x 1 Gb</td>
<td>2 x 10 Gb</td>
</tr>
<tr>
<td>Driver version</td>
<td>17.5.10</td>
<td>1.1200.0</td>
</tr>
<tr>
<td>Cooling fans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cooling fans</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Power supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vendor and model</td>
<td>Dell L1100E-S1</td>
<td>HP HSTNS-PL41</td>
</tr>
<tr>
<td>Number of power supplies</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wattage of each (W)</td>
<td>1100</td>
<td>800</td>
</tr>
</tbody>
</table>
Appendix C: How we tested

In our labs, we tested a mixed OLTP workload on the Dell EMC VxRail P470F with VMware vSAN versus the HPE SimpliVity 380 with OmniStack in two different phases. For phase 1, we tested 18 VMs at 0ms think time to stress the storage on each solution. In phase 2, we introduced a small amount of think time to simulate a more real-world situation. We tested our original 18 VMs at 50ms think time and then scaled up the VM count to 36, again testing at 50ms think time.

Before an engineer from Dell EMC or HPE can come out and complete the setup, you must have the proper networking in place. We received a pre-installation networking checklist from both Dell EMC and HPE, and we configured our network to meet those guidelines. For details on our final switch configuration, see Appendix B.

Once our networking checklist was complete, an engineer from both Dell EMC and HPE came out to finish the installations. Both hyper-converged systems come with vSphere 6, vCenter 6, and the storage solutions mentioned above pre-installed. We did not make any modifications to the hardware or server OS after the initial setup configuration was completed by the engineers.

After the engineers completed the setup, we created six small SQL database VMs, six medium SQL database VMs, and six large SQL database VMs on each cluster for our testing environment. We ran the DS2 benchmark against the SQL VMs and measured OPM, latency, and IOPs for each solution.

In our final configuration, we have 12 small SQL Server database VMs, 12 medium SQL Server database VMs, and 12 large SQL Server database VMs. We again ran the DS2 benchmark against the SQL Server VMs and measured OPM, latency, and IOPs for each solution.

We used the following steps to configure our environment.

Creating the HPE SimpliVity 380 datastores

1. Login to the SimpliVity vCenter.
2. Click SimpliVity Federation.
3. In the navigation pane on the left, click Datastores.
4. Click the Create Datastore icon.
5. Enter a name for the datastore, and assign a backup policy from the drop-down menu.
6. Enter a size for the datastore.
7. Click OK.

Creating the small VMs on the HPE SimpliVity 380

We created one small gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 4.
 b. Set the Memory to 12GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 1 x 55GB VMDK for data, 1 x 25GB VMDK for log.
 d. Create 2 additional SCSI controllers, and assign the data VMDK to one and the log VMDK to the other.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.
9. Click Next.
10. Click Finish.

Creating the medium VMs on the HPE SimpliVity 380

We created one medium gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 6.
 b. Set the Memory to 50GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 1 x 185GB VMDK for data, 1 x 40GB VMDK for log.
 d. Create 2 additional SCSI controllers, and assign the data VMDK to one and the log VMDK to the other.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.
9. Click Next.
10. Click Finish.

Creating the large VMs on the HPE SimpliVity 380

We created one large gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 8.
 b. Set the Memory to 128GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 2 x 220GB VMDK for data, 1 x 95GB VMDK for log.
 d. Create 3 additional SCSI controllers, and assign each data VMDK to one and the log VMDK to the third.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.
9. Click Next.
10. Click Finish.

Cloning a SimpliVity VM with SimpliVity Rapid Clone

1. Right-click the VM you wish to clone.
2. Click All SimpliVity Actions.
3. Click Clone Virtual Machine.
4. Rename the Virtual Machine.
5. Click OK.

Creating the VM storage policy for the Dell EMC VxRail P470F

1. Click the home drop-down menu, and select Policies and Profiles.
2. Select VM Storage Policies.
3. Click the icon to Create a new VM storage policy.
4. Enter a name, and click Next.
5. Click Next.
6. On the Rule-Set 1 tab, from the Rules based on data services drop-down menu, select VSAN.
7. Click the <Add rule> drop-down menu, and select Number of failures to tolerate.
8. Set the Number of failures to tolerate to 1.
9. Click the <Add rule> drop-down menu, and select Fault tolerance method.
10. Set the Fault tolerance method to RAID-1 (Mirroring) – Performance.
11. Click Next.
12. Click Next.
13. Click Finish.

Creating the small VMs on the Dell EMC VxRail P470F

We created one small gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click Next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 4.
 b. Set the Memory to 12GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 1 x 55GB VMDK for data, 1 x 25GB VMDK for log. Set all VMDKs to the VM storage policy previously created.
 d. Create two additional SCSI controllers, and assign the data VMDK to one and the log VMDK to the other.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.
9. Click Next.
10. Click Finish.

Creating the medium VMs on the Dell EMC VxRail P470F

We created one medium gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click Next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 6.
 b. Set the Memory to 50GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 1 x 185GB VMDK for data, 1 x 40GB VMDK for log. Set all VMDKs to the VM storage policy previously created.
 d. Create two additional SCSI controllers, and assign the data VMDK to one and the log VMDK to the other.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.
9. Click Next.
10. Click Finish.

Creating the large VMs on the Dell EMC VxRail P470F

We created one large gold image VM for SQL Server using the following steps.

1. In VMware vCenter, navigate to Virtual Machines.
2. To create a new VM, click the icon.
3. Leave Create a new virtual machine selected, and click Next.
4. Enter a name for the virtual machine, and click Next.
5. Place the VM on the cluster, and click Next.
6. Select the desired datastore for the 40GB OS VMDK, and click Next.
7. Select the guest OS as Microsoft Windows Server 2016 (64-bit), and click Next.
8. In the Customize Hardware section, use the following settings:
 a. Set the vCPU count to 8.
 b. Set the Memory to 128GB, and check the Reserve all guest memory box.
 c. Add 1 x 10GB VMDK for TempDB & TempLogs, 2 x 220GB VMDK for data, 1 x 95GB VMDK for log. Set all VMDKs to the VM storage policy previously created.
 d. Create three additional SCSI controllers, and assign each data VMDK to one and the log VMDK to the third.
 e. Attach a Windows Server 2016 ISO to the CD/DVD drive.

9. Click Next.
10. Click Finish.

Installing Windows Server 2016 onto the VMs

1. Attach the Windows Server 2016 ISO to the virtual machine.
2. Open the VM console and start the VM.
3. When prompted to boot from DVD, press any key.
4. When the installation screen appears, press shift+F10 to enter the command prompt.
5. Run the following commands to partition the disk:
 a. diskpart
 b. select disk 0
 c. create partition primary size=500
 d. active
 e. format fs=ntfs label="System" quick
 f. create partition primary size=40,458
 g. format fs=ntfs label=OS quick unit=8192
 h. assign
 i. exit
 j. exit
6. Leave language, time/currency format, and input method as default, and click Next.
7. Click Install now.
8. When the installation prompts you, enter the product key.
9. Select Windows Server 2016 Datacenter Edition (Server with a GUI), and click Next.
10. Check I accept the license terms, and click Next.
11. Click Custom: Install Windows only (advanced).
12. Select Drive 0 Partition 1, and click Next. This starts Windows automatically, and Windows will restart automatically after completing.
13. When the Settings page appears, fill in the Password and Reenter Password fields with the same password.
14. Log in with the password you set up previously.

Installing SQL Server 2016

1. Attach the installation media ISO for SQL Server 2016 to the VM.
2. Click Run SETUP.EXE. If Autoplay does not begin the installation, navigate to the SQL Server 2016 DVD, and double-click it.
3. In the left pane, click Installation.
4. Click New SQL Server stand-alone installation or add features to an existing installation.
5. Click the checkbox to accept the license terms, and click Next.
6. Click Use Microsoft Update to check for updates, and click Next.
7. To install the setup support files, click Install.
8. If there are no failures displayed, click Next.
9. At the Setup Role screen, choose SQL Server Feature Installation, and click Next.
11. Click Next.
12. At the Instance configuration screen, leave the default selection of default instance, and click Next.
13. At the Database Engine Configuration screen, select the authentication method you prefer. For our testing purposes, we selected Mixed Mode.
14. Enter and confirm a password for the system administrator account.
15. Click Add Current user. This may take several seconds.
16. Click Next.
17. At the Error and usage reporting screen, click Next.
18. At the Installation Configuration Rules screen, check that there are no failures or relevant warnings, and click Next.
19. At the Ready to Install screen, click Install.
20. Close the installation window.

Enabling Lock pages in memory
1. Inside the VM, click Start, type gpedit.msc, and press Enter.
3. Select User Rights Assignment, and in the right pane, scroll down to Lock pages in memory.
4. Right-click Lock pages in memory, and click Properties.
5. Click Add User or Group, and add your SQL user account.
6. Click OK.

Formatting a Windows NTFS volume for SQL Server
1. Right-click the Start Icon, and click Disk Management.
2. Right-click the disk, and click Online.
3. Right-click the disk again, and click Initialize.
4. Right-click an unallocated area, and select New Simple Volume.
5. Click Next.
6. Click Next.
7. Assign a letter path, and click Next.
8. Set the Allocation Unit Size to 64K, and name the Volume Label.
9. Click Next.
10. Click Finish.
11. Repeat steps 1-10 on all Data and Log volumes.

Configuring DVD Store 2

Data generation overview
We generated the data using the Install.pl script included with DVD Store version 2.1, providing the parameters for our 25GB, 100GB, and 250GB, database sizes and the Microsoft SQL Server 2016 platform. We ran the Install.pl script on a utility system running Linux®. The Install.pl script also generated the database schema.

After processing the data generation, we transferred the data files and schema creation files to a Windows-based system running SQL Server 2016. We built the databases in SQL Server 2016, and then performed a full backup. We used that backup file to restore the server between test runs.

The only modification we made to the schema creation scripts were the specified file sizes for our database. We explicitly set the file sizes higher than necessary to ensure that no file-growth activity would affect the outputs of the test. Besides this file size modification, the database schema was created and loaded according to the DVD Store documentation. Specifically, we followed the steps below:

1. Generate the data and create the database and file structure using database creation scripts in the DS2 download. Make size modifications specific to your databases and the appropriate changes to drive letters.
2. Transfer the files from the Linux data generation system to a Windows system running SQL Server.
3. Create database tables, stored procedures, and objects using the provided DVD Store scripts.
4. Set the database recovery model to bulk-logged to prevent excess logging.
5. Load the data we generated into the database. For data loading, use the import wizard in SQL Server Management Studio. Where necessary, retain options from the original scripts, such as Enable Identity Insert.
6. Create indices, full-text catalogs, primary keys, and foreign keys using the database-creation scripts.
7. Update statistics on each table according to database-creation scripts, which sample 18 percent of the table data.
8. On the SQL Server instance, create a ds2user SQL Server login using the following Transact-SQL (T-SQL) script:

   ```sql
   USE [master]
   GO
   CREATE LOGIN [ds2user] WITH PASSWORD=N'',
   DEFAULT_DATABASE=[master],
   DEFAULT_LANGUAGE=[us_english],
   CHECK_EXPIRATION=OFF,
   CHECK_POLICY=OFF
   GO
   ```
9. Set the database recovery model back to full.
10. Create the necessary full text index using SQL Server Management Studio.
11. Create a database user and mapped this user to the SQL Server login.
12. Set the compatibility level to 2014.
13. Perform a full backup of the database, which lets you restore the databases to a pristine state relatively quickly between tests.

The table below shows our initial file size modifications for the three database sizes.

<table>
<thead>
<tr>
<th>Logical name</th>
<th>Filegroup</th>
<th>Initial size (MB) Small database</th>
<th>Initial size (MB) Medium database</th>
<th>Initial size (MB) Large database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database files</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>primary</td>
<td>PRIMARY</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>cust1</td>
<td>DS_CUST_FG</td>
<td>5,144</td>
<td>20,504</td>
<td>50,776</td>
</tr>
<tr>
<td>cust2</td>
<td>DS_CUST_FG</td>
<td>5,144</td>
<td>20,504</td>
<td>50,776</td>
</tr>
<tr>
<td>cust3</td>
<td>DS_CUST_FG</td>
<td>5,144</td>
<td>20,504</td>
<td>50,776</td>
</tr>
<tr>
<td>cust4</td>
<td>DS_CUST_FG</td>
<td>5,144</td>
<td>20,504</td>
<td>50,776</td>
</tr>
<tr>
<td>ind1</td>
<td>DS_IND_FG</td>
<td>5,120</td>
<td>15,360</td>
<td>35,840</td>
</tr>
<tr>
<td>ind2</td>
<td>DS_IND_FG</td>
<td>5,120</td>
<td>15,360</td>
<td>35,840</td>
</tr>
<tr>
<td>ind3</td>
<td>DS_IND_FG</td>
<td>5,120</td>
<td>15,360</td>
<td>35,840</td>
</tr>
<tr>
<td>ind4</td>
<td>DS_IND_FG</td>
<td>5,120</td>
<td>15,360</td>
<td>35,840</td>
</tr>
<tr>
<td>ds_misc</td>
<td>DS_MISC_FG</td>
<td>300</td>
<td>200</td>
<td>392</td>
</tr>
<tr>
<td>orders1</td>
<td>DS_ORDERS</td>
<td>3,072</td>
<td>10,028</td>
<td>25,004</td>
</tr>
<tr>
<td>orders2</td>
<td>DS_ORDERS</td>
<td>3,072</td>
<td>10,028</td>
<td>25,004</td>
</tr>
<tr>
<td>orders3</td>
<td>DS_ORDERS</td>
<td>3,072</td>
<td>10,028</td>
<td>25,004</td>
</tr>
<tr>
<td>orders4</td>
<td>DS_ORDERS</td>
<td>3,072</td>
<td>10,028</td>
<td>25,004</td>
</tr>
<tr>
<td>Log files</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ds_log</td>
<td>Not applicable</td>
<td>20,480</td>
<td>36,008</td>
<td>90,152</td>
</tr>
</tbody>
</table>
Configuring the database workload client

For our testing, we used a virtual client for the Microsoft SQL Server client. To create this client, we installed Windows Server 2012 R2 and assigned a static IP address.

Running the DVD Store tests

We created a series of batch files, SQL scripts, and shell scripts to automate the complete test cycle. DVD Store outputs an orders-per-minute metric, which is a running average calculated through the test. In this report, we report the last OPM reported by each client/target pair.

Each complete test cycle consisted of the following general steps:

1. Clean up prior outputs from the target system and the client driver system.
2. Drop the database from the target.
3. Restore the database on the target.
4. Reboot the target.
5. Wait for a ping response from the server under test and the client system.
6. Let the test server idle for 10 minutes.
7. Start the DVD Store driver on the client.

We used the following DVD Store parameters for testing:

d\text{2sqlserverdriver.exe --target=<target_IP> --ramp_rate=10 --run_time=60 --n_threads=32 --db_size=<25/100/250>GB --think_time=0 --detailed_view=Y --warmup_time=30 --report_rate=1 --csv_output=<drive_path>}

We ran this test three times and took the median run from each solution.
Appendix D: Pre-installation checklist switch configuration

! Version 9.5(0.1)
! Last configuration change at Sat Jul 1 07:28:13 2017 by admin
! Startup-config last updated at Wed Jul 12 10:29:07 2017 by admin
! boot system stack-unit 0 primary system: A:
boot system stack-unit 0 secondary system: B:
boot system stack-unit 0 default system: A:
boot system gateway 0.0.0.0
! redundancy auto-synchronize full
! hardware watchdog
! hostname Dell
! username admin password 7 297a4f435cb9010182895c1658f993e7 privilege 15
! stack-unit 0 provision S4810
! stack-unit 0 stack-group 11
! interface TenGigabitEthernet 0/0
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 no shutdown
! interface TenGigabitEthernet 0/1
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown
! interface TenGigabitEthernet 0/2
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown
! interface TenGigabitEthernet 0/3
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown
! interface TenGigabitEthernet 0/4
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown
! interface TenGigabitEthernet 0/5
 no ip address
 mtu 12000
 portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/6
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/7
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/8
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/9
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/10
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/11
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/12
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown

interface TenGigabitEthernet 0/13
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port no shutdown
interface TenGigabitEthernet 0/14
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/15
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/16
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/17
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/18
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/19
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/20
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/21
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/22
 no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/23
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/24
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/25
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/26
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/27
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/28
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/29
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
no shutdown

interface TenGigabitEthernet 0/30
no ip address
mtu 12000
portmode hybrid
switchport spanning-tree rstp edge-port
interface TenGigabitEthernet 0/31
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/32
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/33
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/34
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/35
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/36
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/37
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/38
 no ip address
 mtu 12000
 portmode hybrid
 switchport
 spanning-tree rstp edge-port
 no shutdown

interface TenGigabitEthernet 0/39
no ip address
mtu 12000
portmode hybrid
switchport
spanning-tree rstp edge-port
no shutdown
!
interface TenGigabitEthernet 0/40
no ip address
mtu 12000
portmode hybrid
switchport
spanning-tree rstp edge-port
no shutdown
!
interface TenGigabitEthernet 0/41
no ip address
mtu 12000
portmode hybrid
switchport
spanning-tree rstp edge-port
no shutdown
!
interface TenGigabitEthernet 0/42
no ip address
mtu 12000
portmode hybrid
switchport
spanning-tree rstp edge-port
no shutdown
!
interface TenGigabitEthernet 0/43
no ip address
mtu 12000
portmode hybrid
switchport
spanning-tree rstp edge-port
no shutdown
!
interface fortyGigE 0/48
description ISL to Switch2
no ip address
mtu 12000
!
port-channel-protocol LACP
port-channel 100 mode active
no shutdown
!
interface fortyGigE 0/52
no ip address
mtu 12000
shutdown
!
interface fortyGigE 0/56
description ISL to Switch2
no ip address
mtu 12000
!
port-channel-protocol LACP
port-channel 100 mode active
no shutdown
!
interface fortyGigE 0/60
no ip address
mtu 12000
shutdown
!
interface ManagementEthernet 0/0
no ip address
shutdown
!
interface ManagementEthernet 1/0
no shutdown
!
interface ManagementEthernet 2/0
no shutdown
!
interface ManagementEthernet 3/0
no shutdown
!
interface ManagementEthernet 4/0
no shutdown
!
interface ManagementEthernet 5/0
no shutdown
!
interface ManagementEthernet 6/0
no shutdown
!
interface ManagementEthernet 7/0
no shutdown
!
interface ManagementEthernet 8/0
no shutdown
!
interface ManagementEthernet 9/0
no shutdown
!
interface ManagementEthernet 10/0
no shutdown
!
interface ManagementEthernet 11/0
no shutdown
!
interface Port-channel 100
description ISL to Switch2
no ip address
portmode hybrid
switchport
no shutdown
!
interface Vlan 1
untagged Port-channel 100
!
interface Vlan 10
ip address 10.200.0.6/16
untagged TenGigabitEthernet 0/0-43
no shutdown
!
interface Vlan 20
no ip address
tagged TenGigabitEthernet 0/1-43
tagged Port-channel 100
shutdown
!
interface Vlan 30
no ip address
tagged TenGigabitEthernet 0/1-43
tagged Port-channel 100
shutdown
!
interface Vlan 40
no ip address
tagged TenGigabitEthernet 0/1-43
tagged Port-channel 100
shutdown
!
interface Vlan 1000
description Federation
no ip address
tagged TenGigabitEthernet 0/25,27,29,31
tagged Port-channel 100
shutdown
!
interface Vlan 2000
description Storage
no ip address
tagged TenGigabitEthernet 0/25,27,29,31
tagged Port-channel 100
shutdown
!
ip route 0.0.0.0/0 10.200.0.1
!
ip ssh server enable
!
ip igmp snooping enable
!
protocol lldp
!
line console 0
line vty 0
line vty 1
line vty 2
line vty 3
line vty 4
line vty 5
line vty 6
line vty 7
line vty 8
line vty 9
!
reload-type normal-reload
!
end
Appendix E: Complete results

<table>
<thead>
<tr>
<th></th>
<th>Dell EMC VxRail P470F</th>
<th>HPE Simplivity 380</th>
<th>Dell EMC VxRail P470F</th>
<th>HPE Simplivity 380</th>
<th>Dell EMC VxRail P470F</th>
<th>HPE Simplivity 380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of VMs</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>DS2 think time</td>
<td>0ms</td>
<td>0ms</td>
<td>50ms</td>
<td>50ms</td>
<td>50ms</td>
<td>50ms</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>27.77</td>
<td>22.34</td>
<td>15.53</td>
<td>19.58</td>
<td>29.05</td>
<td>19.56</td>
</tr>
<tr>
<td>Read latency (ms)</td>
<td>3.06</td>
<td>5.14</td>
<td>1.74</td>
<td>4.33</td>
<td>3.74</td>
<td>13.72</td>
</tr>
<tr>
<td>Write latency (ms)</td>
<td>5.57</td>
<td>29.41</td>
<td>4.70</td>
<td>24.38</td>
<td>9.01</td>
<td>63.33</td>
</tr>
<tr>
<td>Read IOPs</td>
<td>10,768</td>
<td>4,810</td>
<td>6,135</td>
<td>4,102</td>
<td>10,691</td>
<td>4,663</td>
</tr>
<tr>
<td>Write IOPs</td>
<td>26,127</td>
<td>17,530</td>
<td>13,770</td>
<td>13,575</td>
<td>30,979</td>
<td>14,129</td>
</tr>
<tr>
<td>Total IOPS</td>
<td>36,895</td>
<td>22,340</td>
<td>19,905</td>
<td>17,677</td>
<td>41,670</td>
<td>18,792</td>
</tr>
<tr>
<td>OPM</td>
<td>800,045</td>
<td>390,961</td>
<td>447,194</td>
<td>312,466</td>
<td>806,038</td>
<td>290,774</td>
</tr>
</tbody>
</table>

This project was commissioned by Dell EMC.

Principled Technologies is a registered trademark of Principled Technologies, Inc. All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however, Principled Technologies, Inc. specifically disclaims any warranty, expressed or implied, relating to the test results and analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any particular purpose. All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled Technologies, Inc., its employees and its subcontractors shall have no liability whatsoever from any claim of loss or damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in connection with its testing, even if advised of the possibility of such damages. In no event shall Principled Technologies, Inc.’s liability, including for direct damages, exceed the amounts paid in connection with Principled Technologies, Inc.’s testing. Customer’s sole and exclusive remedies are as set forth herein.