Preface

Chapter 1 **Introduction**

- Software used in the NetWorker Module environment .. 12
- Security requirements ... 12
- Authentication mode .. 12
- Transparent data encryption (TDE) ... 13
- NetWorker PowerSnap modules .. 13
- Backup strategies ... 14
 - Traditional backup .. 14
 - Snapshot backups ... 15
 - Backup levels .. 18
- Recovery strategies ... 19
 - Traditional recovery ... 19
 - Snapshot recovery ... 20
 - Restore types .. 21
 - Restore modes ... 23
 - Restore time .. 24
- NetWorker User for SQL Server program overview ... 25
 - Fake objects ... 25
 - Display conventions ... 26
 - Marking items ... 26
 - Marking semantics and restrictions .. 26
 - Restore window restrictions ... 27
- Error logs for backup and recovery ... 28

Chapter 2 **Manual Backups**

- About manual backups ... 30
- Performing a backup with NetWorker User for SQL Server 31
 - Task 1: Start the NetWorker User for SQL Server program 31
 - Task 2: Select the SQL Server data .. 32
 - Task 3: Set the backup options .. 33
 - Task 4: Set the backup properties for each marked database 34
 - Task 5: Start and monitor the backup .. 35
 - Task 6: Back up the client indexes and bootstrap file 36
Contents

Chapter 3 Scheduled Backups
About scheduled backups.......................... 38
Setting backup levels 39
 Differences between backup levels 40
Configuring scheduled backups 42
 Task 1: Assign a Snapshot policy (optional) .. 42
 Task 2: Configure one or more group resources .. 43
 Task 3: Configure one or more Client resources .. 43
 Task 4: Configure a schedule and set backup levels .. 45
 Task 5: Configure the NetWorker volume pools .. 46
 Task 6: Test the Configuration 46
Unavailable databases and group backup failure .. 48

Chapter 4 Restoring SQL Server Data
Before the restore.................................. 50
 Rollback restore requirements 51
 Piecemeal restore requirements 51
Backing up the active portion of the transaction log .. 52
 Backing up the transaction log 53
 Backing up the transaction log for SQL Server Express .. 53
NetWorker Module database restore process 54
Performing a restore with NetWorker User for SQL Server .. 55
 Task 1: Set up the restore 55
 Task 2: Specify the browse time (optional) ... 73
 Task 3: View the required volumes (optional) .. 74
 Task 4: Set the restore properties (optional) .. 75
 Task 5: Start the restore 87

Chapter 5 Backup and Recovery for Microsoft Cluster Servers
The NetWorker client in a Microsoft Cluster 90
The NetWorker Module in a Microsoft Cluster .. 91
 How the module detects SQL Server instances .. 91
 Named instances in failover cluster configurations .. 91
 Active/Passive cluster configurations 92
How to run a scheduled backup 93
 Requirements for scheduled backups 93
 Configure scheduled backups 94
Manual backups and restores for a cluster 97
 From the NetWorker User for SQL Server program .. 97
 From the command prompt 97

Chapter 6 Microsoft SQL Server
Microsoft SQL Server recovery models 100
 Full recovery model 100
 Bulk_Logged recovery model 100
 Simple recovery model 100
 Specifying database recovery models 101
 Changing the recovery model for a database .. 102
Microsoft SQL Server named log marks 104
 Transaction log maintenance 104
 How to prevent log overflow 104
 How to create an alert for SQL Server 105
SQL Server master database maintenance .. 107
Database consistency check ... 107
Perform a database consistency check .. 108
Multiple nonclustered instances of SQL Server .. 109
How a restore interacts with SQL Server .. 111
Restoring the SQL Server master database .. 111
Restoring the SQL Server master database in a cluster 111
Restoring the SQL Server msdb database .. 112
Restoring both the SQL Server master and msdb databases 112

Chapter 7 Disaster Recovery
Disaster recovery features .. 114
System database restore automation .. 114
Database restore order .. 114
SQL Server startup complete detection ... 114
Overwriting capability ... 115
Procedures for disaster recovery ... 116
Recovery of a damaged primary disk .. 116
Recovery of a damaged binary disk ... 116
Recovery of SQL Server and NetWorker server .. 117
Recovery of SQL Server without reinstalling ... 118
Recovery of SQL Server .. 119
Use the NetWorker User for SQL Server program to complete disaster recovery .. 119

Appendix A NetWorker Module Commands
Overview of the module commands .. 122
Using the nsrsqlsv command ... 123
Command syntax for nsrsqlsv ... 123
Command options for nsrsqlsv ... 123
Using the nsrsqlrc command ... 126
Command syntax for nsrsqlrc ... 126
Command options for nsrsqlrc ... 126
Sample restore command lines .. 131
Using the nwmssql command ... 132
Command options for nwmssql .. 132
Backup and restore command syntax for SQL Server data 133
Syntax for a named instance configuration ... 134
Syntax for names containing a period, backslash, or colon 134

Appendix B Striped Backup and Recovery
Striping with NetWorker Module for Microsoft SQL Server 138
Interleaving ... 138
Striped backups ... 139
Performance considerations for striping ... 139
Perform a striped backup ... 140
Striped recoveries .. 141
Optimal striped recovery versus fail-safe striped recovery 141
Performing an optimal striped recovery ... 141
Performing a fail-safe striped recovery ... 142
Windows registry entry for striped backup ... 143
Contents

Glossary.. 145

Index... 155
As part of an effort to improve and enhance the performance and capabilities of its product lines, EMC periodically releases revisions of its hardware and software. Therefore, some functions described in this document may not be supported by all versions of the software or hardware currently in use. For the most up-to-date information on product features, refer to your product release notes.

If a product does not function properly or does not function as described in this document, please contact your EMC representative.

Audience

This document is part of the EMC NetWorker Module for Microsoft SQL server documentation set, and is intended for use by system administrators and operators who monitor daily backups of SQL Server data. This guide may also be helpful during the installation and configuration of this product.

Readers of this document are expected to be familiar with the following topics:

◆ EMC NetWorker products

Related documentation

The following EMC sources provide additional information relevant to the configuration and use of this NetWorker Module. Related documents include:

◆ EMC NetWorker Module for Microsoft SQL Server Release 5.2 Service Pack 1 Installation Guide
◆ EMC NetWorker Module for Microsoft SQL Server Release 5.2 Service Pack 1 Release Notes
◆ EMC NetWorker Module for Microsoft SQL Server online help
◆ EMC NetWorker PowerSnap Module guides

These sources, specific to the NetWorker server version, are also available:

◆ EMC NetWorker Administration Guide
◆ EMC NetWorker Installation Guide
◆ EMC NetWorker Release Notes
◆ EMC NetWorker Disaster Recovery Guide

Refer to the SQL Server documentation from Microsoft for procedures and administrative information.
Conventions used in this document

EMC uses the following conventions for special notices.

Note: A note presents information that is important, but not hazard-related.

⚠️ CAUTION

A caution contains information essential to avoid data loss or damage to the system or equipment.

⚠️ IMPORTANT

An important notice contains information essential to operation of the software.

Typographical conventions

EMC uses the following type style conventions in this document:

Normal

Used in running (nonprocedural) text for:
- Names of interface elements (such as names of windows, dialog boxes, buttons, fields, and menus)
- Names of resources, attributes, pools, Boolean expressions, buttons, DQL statements, keywords, clauses, environment variables, functions, utilities
- URLs, pathnames, filenames, directory names, computer names, filenames, links, groups, service keys, file systems, notifications

Bold

Used in running (nonprocedural) text for:
- Names of commands, daemons, options, programs, processes, services, applications, utilities, kernels, notifications, system calls, man pages

Used in procedures for:
- Names of interface elements (such as names of windows, dialog boxes, buttons, fields, and menus)
- What user specifically selects, clicks, presses, or types

Italic

Used in all text (including procedures) for:
- Full titles of publications referenced in text
- Emphasis (for example a new term
- Variables

Courier

Used for:
- System output, such as an error message or script
- URLs, complete paths, filenames, prompts, and syntax when shown outside of running text

Courier bold

Used for:
- Specific user input (such as commands

Courier italic

Used in procedures for:
- Variables on command line
- User input variables

< >

Angle brackets enclose parameter or variable values supplied by the user

[]

Square brackets enclose optional values

| |

Vertical bar indicates alternate selections - the bar means “or”

{}

Braces indicate content that you must specify (that is, x or y or z)

...

Ellipses indicate nonessential information omitted from the example
Where to get help
EMC support, product, and licensing information can be obtained as follows.

Product information — For documentation, release notes, software updates, or for information about EMC products, licensing, and service, go to the EMC Powerlink website (registration required) at:

http://Powerlink.EMC.com

Technical support — For technical support, go to EMC Customer Service on Powerlink. To open a service request through Powerlink, you must have a valid support agreement. Please contact your EMC sales representative for details about obtaining a valid support agreement or to answer any questions about your account.

Your comments
Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Please send your opinion of this document to:

SSGdocumentation@EMC.com
This chapter provides information about how the EMC NetWorker Module for Microsoft SQL Server software backs up and restores Microsoft SQL Server data.

This chapter includes the following sections:

- Software used in the NetWorker Module environment ... 12
- Backup strategies ... 14
- Recovery strategies ... 19
- NetWorker User for SQL Server program overview.. 25
- Error logs for backup and recovery .. 28
Software used in the NetWorker Module environment

The EMC® NetWorker® Module for Microsoft SQL Server is a NetWorker add-on module that provides backup and restore of the following database and transaction logs:

- Microsoft SQL Server 2008
- Microsoft SQL Server 2005
- Microsoft SQL Server 2000

The NetWorker software provides backup and restore capabilities for file system data only. A file system backup, however, does not save SQL Server data in a recoverable form. The NetWorker Module for Microsoft SQL Server enables the NetWorker software to back up and restore Microsoft SQL Server data. The EMC NetWorker Module for Microsoft SQL Server Installation Guide provides details about NetWorker software and module configuration.

Security requirements

Use of this module requires that the proper privileges be granted to the module processes. Microsoft SQL Server imposes the following requirements on third-party backup products:

- The logon account that the third-party backup process uses to connect to SQL Server must be granted the SQL Server system administrator (sysadmin) role in order to issue the T-SQL BACKUP query.
- The Windows logon account under which the third-party backup process is running must be granted the SQL Server sysadmin role in order to open a shared memory handle when initializing the Microsoft Virtual Device Interface (VDI).

Note: Microsoft Windows Server 2008 introduced User Access Control, which causes processes to run as a standard user even if part of the administrator’s group. The NetWorker Module processes account for this change.

This module imposes the following requirements:

- When using the nsrsqlsv and nsrsqlrc commands, the Windows logon account must be granted the SQL Server sysadmin role.
- NetWorker User for SQL Server must be a member of the local Backup Operators group.
- NetWorker User for SQL Server must be a member of the local Administrators group.

Authentication mode

NetWorker Module for Microsoft SQL Server works with SQL Server’s two authentication modes:

- Windows authentication mode.

 When running in Windows Authentication Mode, the Windows logon account that this module uses must be granted the SQL Server sysadmin role. The administrator and BUILTIN\administrator accounts are automatically members of the sysadmin role.
- Mixed mode (Windows authentication and SQL Server authentication).
When running in mixed mode and using a SQL Server logon account to connect to Microsoft SQL Server, the logon account must be granted the sysadmin role. Microsoft documentation provides more information on how to add members to a SQL Server role.

Transparent data encryption (TDE)

Microsoft SQL Server 2008 introduces the TDE database-level encryption feature. This feature is designed to provide protection for the entire database at rest, without affecting existing applications. This module now supports the encryption of SQL data at the cell-level as in SQL Server 2005, at the full database-level by using TDE, or the file-level encryption options provided by Windows.

The Microsoft SQL Server product documentation provides more information about TDE, enabling data encryption, and protecting your encryption keys.

Note: When enabling TDE, back up the certificate and the private key associated with the certificate. If the certificate becomes unavailable or if the database is restored on another server, backups of both the certificate and the private key must be available to open the database.

NetWorker PowerSnap modules

This module supports EMC NetWorker PowerSnap™ Modules, which are interfaces between a snapshot-capable storage subsystem and the NetWorker software.

By using the PowerSnap Module appropriate for the SQL Server storage subsystem, you can create and manage point-in-time (PiT) copies (snapshots) of Microsoft SQL Server data.

The EMC NetWorker PowerSnap Module guides provide specific storage subsystem requirements for PowerSnap Modules.

The EMC software compatibility guides at http://Powerlink.EMC.com provide a current list of supported storage subsystems.

Homogenous storage platform environment

The NetWorker Module for Microsoft SQL Server supports snapshot backup operations in homogenous storage platform environments only. All SQL components (databases and log files) must be located on a snapshot-capable storage subsystem.

Note: If the module detects that any SQL objects included in the request are located on storage hardware that is not snapshot capable, the backup operation terminates and an error message is displayed. These objects can be backed up and restored with traditional operations.

LAN and LAN-free environments

In LAN and LAN-free environments, this module supports the following:

- Snapshot operations
- Serverless backup method

The EMC NetWorker PowerSnap Module guides provide specific storage subsystem information for LAN and LAN-free environments.
Backup strategies

The following sections provide an overview of the NetWorker Module for Microsoft SQL Server traditional and snapshot backup operations.

Traditional backup

Traditional backups are often referred to as manual backups. A traditional backup of SQL data can be performed at any time and is independent of any scheduled backups. Chapter 2, “Manual Backups,” provides information on manual backups.

For traditional backups, Microsoft SQL Server supports database, file, filegroup, filestream, and transaction log backups. The NetWorker Module for Microsoft SQL Server provides the mechanism that integrates the SQL database backup technology with the NetWorker software.

Microsoft SQL Server provides support for backing up and restoring filegroups and files. In addition to creating a level full file or filegroup backup, SQL Server supports the creation of filegroup differential and file differential backups.

A filegroup differential backup may actually reduce both media requirements and restore time. The data can be stored across more than one disk or disk partition, and restore time may be reduced. A differential can substitute for any log backups performed between the full and differential backups. A full backup must be performed first.

Note: If a backup was created by using the NetWorker Module for Microsoft SQL Server release 3.0 or later, a SQL Server 2000, 2005, or 2008 file or filegroup can also be restored from a full database backup.

To configure a scheduled backup, an administrator must set the NetWorker server resource attributes by using the NetWorker Management Console or the NetWorker Configuration Wizard. “Configuring scheduled backups” on page 42 provides more information on scheduled backups.
Introduction

Traditional backup process

Figure 1 on page 15 shows an overview of the process interactions among the NetWorker client and server, NetWorker Module for Microsoft SQL Server, and SQL server software during a traditional backup.

![Diagram of traditional backup process]

The following occurs in a traditional backup:

1. The **nsrd** program starts the backup on the NetWorker server.
2. The **savegrp** program executes the NetWorker Module for Microsoft SQL Server backup command (**nsrsqlsv**) on the client instead of performing a standard NetWorker save.
3. The **nsrsqlsv** program passes the backup data from SQL Server to the NetWorker server through an X-Open Backup Services application programming interface (XBSA).

The NetWorker server software performs all scheduling and storage management tasks. The *EMC NetWorker Administration Guide* provides information about the NetWorker services and operations described in this chapter.

Snapshot backups

Snapshot backups are configured as scheduled backups on the NetWorker server. This module does not support manual snapshot backups from either the NetWorker User for SQL Server program or the command prompt.

The NetWorker Module for SQL Server supports:

- Full snapshot backups of SQL Server databases.
- Backups of only one database per scheduled backup.
- Instant, nonpersistent, and serverless snapshot backup types.
Introduction

Note: A snapshot backup fails if more than one database is specified for the Save Set attribute.

A backup will also fail if the transaction logs are not stored on a snapshot supported disk. The data and the transaction logs must both be on snapshot supported disks.

The NetWorker Module for SQL Server does *not* support:

- Differential or incremental (transaction log) backups for databases under a snapshot schedule.
- Snapshot backups for individual filegroups or files.
- Snapshot backups of the SQL Server master database.

Note: Store snapshots on a separate volume. Databases intended for snapshot operations should be isolated on their own volumes. Databases may span one or more volumes for data and log files. It is not necessary to install SQL Server on a volume capable of storing snapshots, unless file system snapshots are intended to maintain SQL Server files (not databases). Other (non-database) files located on database snapshot volumes will be overwritten during rollback operations.

Instant backup

An instant backup creates a PiT (point-in-time) copy, or snapshot, of a SQL Server database and retains the snapshot on the SQL Server’s primary storage subsystem. Depending on how backups are configured, a snapshot created during an instant backup may or may not be moved to secondary storage on the NetWorker server or storage node. Whether the snapshot should be retained is dependent on the snapshot policy.

There are three ways to manage PiT snapshot backups:

- A PiT copy of the data is created and immediately backed up to tape or disk, and the original snapshot is deleted after the backup is complete. A save set that is created on tape is called a Rollover Save Set. This process enables you to perform a rollover restore.

- An existing PiT copy of the data can be copied to a tape or disk, much like a traditional NetWorker backup, and the original PiT copy is retained on the SQL Server’s primary storage subsystem. Thus, two copies of this backup exist. This process enables you to perform a rollover or PiT restore.

- A PiT copy of the data is created and retained on the SQL Server’s primary storage subsystem and no other copy is maintained. You can use this copy to perform a PiT restore only once. If the PiT restore fails for any reason, you must restore from another backup (another snapshot or normal tape).

While the snapshot resides on the SQL Server’s primary storage subsystem, it is referred to as a *persistent* snapshot. Retaining persistent snapshots on primary storage enables the NetWorker Module for SQL Server to perform an instant restore. “Rollback restore type” on page 22 provides information about rollback restores.

Depending on the capabilities of SQL Server’s storage subsystem, schedule instant backups to be performed several times per day. By scheduling frequent instant backups, such as every few hours, exposure to data loss is minimized. You can quickly perform an instant restore to return the SQL Server to a recent point in time.
Nonpersistent backup

A nonpersistent snapshot backup creates a point-in-time copy of a SQL database, and then immediately moves it to secondary storage on the NetWorker server or storage node. The original snapshot is automatically deleted from primary storage.

Note: The operation type for a nonpersistent snapshot backup operation is listed as a conventional backup in the module log files.

Serverless backups

In a serverless backup, a snapshot is created on the SQL Server’s primary storage subsystem and is immediately moved to secondary storage by a proxy client. There is no need for the SQL Server host to move the data to the secondary storage medium (typically tape).

Snapshot backup process

Figure 2 on page 17 shows an overview of the interactions among the NetWorker client and server, the NetWorker Module for SQL Server, the PowerSnap Module, and SQL Server software during a snapshot backup.

Figure 2 Snapshot backup command and data flow

The PowerSnap Module Backup Recover Control (BRC) service, provides snapshot functionality. Through the BRC application programming interface (API), the NetWorker Module for SQL Server determines if SQL Server databases and transaction logs are located on snapshot-capable hardware. The BRC API also provides NetWorker indexing and media database services, and enables the module to specify which files are moved to secondary storage.

The PowerSnap Module’s nsrsnap program is invoked when the NetWorker server initiates a scheduled snapshot backup. The nsrsnap program queries the NetWorker server for configuration information, such as the snapshot policy, then executes the nsrsqlsv backup program with a command that saves a snapshot on the primary storage.
Snapshot data mover

The snapshot data mover (also called proxy client) is the computer that actually moves the data during a snapshot operation. Use the NSR_DATA_MOVER attribute to specify a computer to act as data mover. In this case, the PowerSnap nssnap_save program on the data mover computer performs the backup.

Backup levels

The NetWorker software provides three main levels of backup: full, incremental, and differential, where differential is specified as any level from 1 to 9. The NetWorker Module for Microsoft SQL Server also provides full, incremental, and differential backups.

- An incremental backup, done from the command line, corresponds to a Microsoft SQL Server transaction log backup. A log file backup by itself cannot be used to restore a database. A log file backup is used after a database restore to recover the database to the point of the original failure.

- A differential backup, specified as any level from 1 to 9, is done from the command line, and makes a copy of all the pages in a database modified after the last full database backup.

Table 1 on page 18 shows how the terminology for backup levels used in the Microsoft SQL Server product differs from the terminology used for this module.

Table 1 Terminology

<table>
<thead>
<tr>
<th>Function</th>
<th>NetWorker Module term</th>
<th>SQL Server term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backs up an entire file, filegroup, filestream, or database.</td>
<td>Full file, filegroup or filestream, or database backup (full)</td>
<td>File, filegroup or filestream, or database backup</td>
</tr>
<tr>
<td>Backs up all transaction log changes since the most recent full, differential, or transaction log backup.</td>
<td>Incremental database backup (incr)</td>
<td>Transaction log (also called xlog) backup</td>
</tr>
<tr>
<td>Backs up all database changes since the last full backup.</td>
<td>File, filegroup or filestream, or database differential backup (diff)</td>
<td>Differential backup</td>
</tr>
</tbody>
</table>

Table 2 Where to initiate backup operations

<table>
<thead>
<tr>
<th>Backup type</th>
<th>Backup initiated from</th>
<th>Backup levels available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>full</td>
</tr>
<tr>
<td>Scheduled</td>
<td>NetWorker Administrator program on the server</td>
<td>Yes</td>
</tr>
<tr>
<td>Manual</td>
<td>Command line on the NetWorker server that is a client host</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>NetWorker User for SQL Server program on the client</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Recovery strategies

Data recovery from a traditional or snapshot backup can be performed at any time by using the NetWorker User for SQL Server program. Data recovery from a traditional backup can be performed by running the NetWorker Module for Microsoft SQL Server recover command (`nsrsqlrc`) from the command prompt. Snapshot recoveries cannot be performed from the command prompt.

Traditional recovery

NetWorker Module for Microsoft SQL Server traditional recovery operations restore files, filegroups, databases, and transaction log backups. Chapter 4, “Restoring SQL Server Data,” provides additional information about traditional recovery operations.

Figure 3 on page 19 shows the functional relationship between the NetWorker server, the NetWorker Module, and the SQL Server products during a traditional recovery operation.

![Traditional recovery command and data flow](image)

A request for a traditional restore operation:

1. The `nsrsqlrc` command starts the recover.
2. The NetWorker XBSA API translates the object names requested by the NetWorker Module for Microsoft SQL Server into a format the NetWorker software understands, and forwards them to the NetWorker server `nsrd` service.
3. The media service, `nsrmmd`, invokes `nsrmmdbd` to search the NetWorker server’s media database for the volumes that contain the objects requested.
4. After the media is mounted, the `nsrmmd` program sends the data through the NetWorker XBSA API to `nsrsqlrc`, which recovers the data to the Microsoft SQL Server directories.
A snapshot recovery operation can be performed at the file, filegroup, or database level from a full database snapshot. The NetWorker Module for Microsoft SQL Server supports one type of snapshot restore operation called an instant restore.

An instant restore operation recovers data from a PiT snapshot, but does not eradicate the original snapshot. Chapter 4, “Restoring SQL Server Data,” provides additional information on snapshot recovery.

Note: This module does not support a snapshot recovery of the SQL Server master database. Snapshot recoveries for filegroups are also not supported.

Figure 4 on page 20 shows the interaction among the NetWorker client and server, the NetWorker Module, PowerSnap Module, and Microsoft SQL Server software during a snapshot recovery operation.

Figure 4
Snapshot recovery command and data flow

A request for a snapshot recovery:

1. The `nsrsq1rc` command starts the recovery. Snapshot recoveries are managed by the PowerSnap Backup Recovery Control (BRC) service, through the BRC API.
2. The BRC service interacts with the NetWorker server to locate the volumes that contain the requested data.
3. In certain cases, the `nsrsnap_save` program on the data mover sends the data through the BRC API to the `nsrsq1rc` program for recovery.

This occurs when the NetWorker client, with access to the snapshot backup, is not the target SQL Server host for the recovery. A different NetWorker client must be used as the data mover.
The NetWorker Module for Microsoft SQL Server restore type is based on the level of backup created, as well as the set of data you need to restore from a backup. The restore type must be specified before browsing and selecting objects for the restore. Three restore types are supported: normal, verify-only, and copy restore, depending on the version of Microsoft SQL Server software involved, as shown in Table 3 on page 21.

Table 3

<table>
<thead>
<tr>
<th>Microsoft SQL Server version</th>
<th>Restore type</th>
<th>Normal</th>
<th>Partial</th>
<th>Piecemeal</th>
<th>Verify</th>
<th>Copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL 2000</td>
<td>Traditional and snapshot</td>
<td></td>
<td>Traditional</td>
<td>Traditional and snapshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL 2005 Enterprise</td>
<td>Traditional and snapshot</td>
<td></td>
<td>Traditional</td>
<td>Traditional and snapshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL 2005 Standard, Workgroup, and Express</td>
<td>Traditional and snapshot</td>
<td></td>
<td>Traditional</td>
<td>Traditional and snapshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL 2008 Enterprise</td>
<td>Traditional and snapshot</td>
<td></td>
<td>Traditional</td>
<td>Traditional and snapshot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQL 2008 Standard, Workgroup, and Express</td>
<td>Traditional and snapshot</td>
<td></td>
<td>Traditional</td>
<td>Traditional and snapshot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal restore type

The normal restore type restores the entire set of data associated with one or more SQL Server backups, including full, incremental, and differential backups. The normal restore type recovers a file, filegroup, or a database to the database originally backed up. The normal restore type can restore level full, level 1 (differential), and level incremental backups in the order required by SQL Server. NetWorker Module for Microsoft SQL Server uses the normal restore type as the default.

The NetWorker Module for Microsoft SQL Server can back up and restore specified files and filegroups. In addition, a single filegroup, or multiple filegroups or files, can be restored from a full database backup.

Partial restore type

The partial restore type recovers a portion of the filegroups associated with a single SQL Server 2000 database backup.

When a partial database restore is performed, the primary filegroup and associated files are always restored, in addition to the files specified for restore. The primary filegroup contains information necessary for restoring the database to the proper structure. Files or filegroups not selected are created, but are empty. Only a single item can be marked for this operation. In addition, a copy of a system database can be marked, but it cannot be overwritten.

Piecemeal restore type

A piecemeal restore, released with SQL Server 2005, is the next generation of the partial restore.

Note: The piecemeal restore is supported only with the Enterprise edition of SQL Server 2005 and 2008.

Piecemeal restore is a multi-stage process that enables you to restore filegroups incrementally to a new or existing database. The first stage of a piecemeal restore
includes the primary filegroup and any number of secondary filegroups, which is similar to the partial restore. After the primary filegroup is restored, the database can be brought online and additional filegroups can be restored as needed.

Verify-only restore type

The verify-only restore type verifies only the backup media for the selected SQL Server backups.

Selecting the verify-only restore type does not restore the SQL Server data. In addition, when verify-only is specified, item-level properties for file, filegroup, and database objects are not available.

Copy restore type

A copy restore is an operation in which data is recovered to a SQL Server host other than the one from which it was backed up. Note that copy restore from and to the same SQL Server instance also can be done.

The copy restore type creates a copy of a database by restoring a SQL Server database backup to a new location, or to a new database name. The copy restore type makes it easy to replicate a database that was previously backed up. You can only mark a single item for this operation. In addition, you can copy a system database, but you cannot overwrite it.

The NetWorker Module for Microsoft SQL Server enables you to restore snapshot backups to a SQL Server host that does not have a snapshot-capable storage subsystem.

Copy restore of snapshot backups

A copy restore of a snapshot backup supports the creation of a new database for the following scenarios:

- Copy restore of an instant backup to a new location.
- Copy restore of an instant backup to another database on the same host within the same storage array.
- Copy restore of an instant backup to a new database on the same host within a different storage array.
- Copy restore from a rollover.
- Copy restore to another database on the same host.
- Copy restore to another database on a different host.

FLIR and FLIR using a mirror restore type

The NetWorker Module for Microsoft SQL Server with PowerSnap Module supports file-logical image recovery (FLIR) and FLIR using a mirror restore types. Both of these restore types recover data from a Symmetrix® backup. Data that was backed up by using an image backup (SymmConnect) is recovered to a standard volume. FLIR recovers to a production volume and FLIR using a mirror recovers to a SAN-based backup or virtual volume. Only one of these options can be selected for a single restore operation.

Rollback restore type

The NetWorker Module for Microsoft SQL Server backups can use the PowerSnap Module functionality to create a PiT copy, or instant backup, of a file system. Many instant backups can be performed in a single day, thus reducing the exposure to data loss.

When a PiT copy is created, a unique save set ID is assigned. In addition, when the data from that PiT copy is backed up to a tape or disk, a different save set ID is
assigned to that data. By having two unique save set IDs, the snapshots (PiT copies) can be handled separately from the backed-up data. Both are stored until either the PiT or rollover expiration policy setting. The copies of the data are removed only when all snapshots and backups of the data have been deleted.

A rollback recovers a specific PiT copy to one or more volumes. You can request a rollback without having to retrieve data from a secondary storage system. Rollback of a managed or non-managed volume prevents the snapshot from being maintained and causes the snap set to become invalid. To minimize risk to data, first perform a tape backup of the snapshot before performing a rollback operation.

Rollbacks are destructive by nature, which means that the entire contents of the file system are overwritten. As a default safety check, a rollback can only restore the original volume. Chapter 4, “Restoring SQL Server Data,” provides more information.

Note: The Microsoft SQL Server module has the ability to detect volume overlap. A warning is displayed if a database is being restored to volumes that have files from other databases.

Restore modes

To restore a database, the module requires that a restore mode be specified. A restore mode instructs the SQL Server how to interact with the database after the restore operation completes. For instance, restore modes can leave the database in an intermediate state, so that additional transaction logs can be applied. Restore modes correspond to SQL Server database restore options.

Normal restore mode

The normal restore mode instructs SQL Server to leave the database in an operational state after the restore completes. This then enables database reads and writes. The normal restore mode is the default mode the module uses when restoring a database.

No-recovery restore mode

The no-recovery restore mode activates the SQL Server NORECOVERY database restore option for the last stage restored. The no-recovery restore mode places the database in an unloadable state after the restore, but is still able to process additional transaction log restore operations.

Standby restore mode

The standby restore mode activates the SQL Server STANDBY database restore option for the last stage restored, which forces the database to be in a read-only state between transaction log restore operations. The standby restore mode provides an undo file for SQL Server to use when rolling back the transactions.

Online restore mode

SQL Server 2005 and 2008 provide the ability to perform a restore operation while a SQL Server database is active. The database is completely offline only while the primary filegroup is being restored. Once the primary filegroup is restored, the database can be brought online while the rest of the filegroups are being restored, and then only the data that is being restored is unavailable. The rest of the database remains available during this type of restore. Earlier versions of SQL Server require that you bring a database offline before you restore the database.
Backups can be restored to a specific time. The restore time controls which backup data should be reinstated when a database is restored. The restore time may also control which portions of a level incremental backup are to be restored when the NetWorker Module for Microsoft SQL Server is instructed to discard transactions performed after a given time.

The default or current restore time for each database comes from the create time of the marked item. By default, the most recent backup is restored. If the most recent backup is level incremental or 1, dependent backups are restored first. User-specified restore times can restore older backup versions or perform point-in-time restore operations. For instance, a point-in-time restore may be specified by using a restore time that is earlier than the create time of the transaction log backup, but later than the create time of the previous backup.

The NetWorker Module for Microsoft SQL Server provides three methods for restoring to a specific time: database backup versions, point-in-time restore of a transaction log (level incremental) backup, and restoring to a named log mark.
NetWorker User for SQL Server program overview

The NetWorker program displays the data items in the SQL Server storage hierarchy for the selected SQL Server instance in the Backup and Restore windows.

The Backup and Restore windows are split into two panes. The left pane consists of expandable trees that display the SQL Server storage hierarchy found on the current NetWorker Module for Microsoft SQL Server host.

The NetWorker User for SQL Server program enables the browsing of filegroups and files contained in a database. However, the program can display data items that are not available for backup or restore operations. These are referred to as **fake objects**.

Fake objects

When a file or filegroup exists in the SQL Server storage hierarchy, but cannot be backed up because of SQL Server settings on the database, the item is displayed in the Backup window by using the fake filegroup or fake file convention. In addition, if you try to mark a fake object, an error dialog box is displayed as in **Figure 5 on page 25**

![Figure 5 Marking a fake object](image)

“Microsoft SQL Server recovery models” on page 100 provides more information about the constraints Microsoft SQL Servers enforce that determine whether an item is available for backup or restore.
Display conventions

The NetWorker User for SQL Server program uses specific data item names, text characteristics, and icons to distinguish the variable qualities of SQL Server data. Table 4 on page 20 outlines these conventions.

<table>
<thead>
<tr>
<th>Data item</th>
<th>Description</th>
<th>Pane</th>
<th>Icon</th>
</tr>
</thead>
</table>
| SQL Server | • Root of the storage hierarchy
 • Signifies all SQL Server databases on the host | Left only | |
| Database | • Descendant of root
 • Signifies a database
 • May contain filegroups | Left and right | |
| Filegroup | • Descendant of a database
 • Signifies a database filegroup or filestream data
 • May contain files | Left or right | |
| Fake filegroup | • Signifies that the filegroup cannot be selected for backup | Left or right | |
| File | • Descendant of a filegroup
 • Signifies a database file | Right only | |
| Fake file | • Signifies that the file cannot be selected for backup | Right only | |

Marking items

The NetWorker Module for Microsoft SQL Server provides marking indicators that help determine the state of each item in the browse tree:

- **Unmarked**

 An unmarked item is one that is not selected for backup or restore. An empty checkbox appears to the left of each unselected item to indicate it is unmarked.

- **Marked**

 A marked item is one that is selected for backup or restore. A check mark appears in the checkbox to the left of each marked item.

- **Partially marked**

 A partially marked item is one that has marked descendants, but the item itself is not explicitly marked. A partially marked item is not backed up or restored. A check mark appears in a gray check box to the left of each partially marked item.

Marking semantics and restrictions

To support the browsing capabilities, the NetWorker User for SQL Server program imposes certain semantics and restrictions regarding how items can be marked. Whether an item can be marked is based on the mark status of that item’s predecessors and descendants. Depending upon what is marked, message dialog boxes may appear to provide additional information on the current marks and the type of operation.
The NetWorker User for SQL Server program enables the following:

- Mark a single file, filegroup, or database.
- Mark multiple, heterogeneous items.
- Mark an item when any of that item’s surrounding items are already marked.
- Mark or unmark all SQL Server data by right-clicking the root item and selecting Mark All Databases or Unmark All Databases from the shortcut menu.
- Unmark all databases from the SQL Server root.

The NetWorker User for SQL Server program imposes the following restrictions:

- You cannot mark an item if any of the predecessors of descendants are already marked except in the SQL Server root.
- When a database is marked, all of the item’s descendants are not automatically marked.
- When a filegroup is marked, all of the files are not automatically marked.

In the Restore window, the rules for marking an item are based on the selected restore type. The normal and verify restore types do not restrict marking in any way. All restorable objects (file, filegroup, filestream data, database) are markable. When the partial, piecemeal, or copy restore type is chosen, only one database object can be marked. Marking the root SQL Server item is not permitted:

- When the partial or piecemeal restore type is chosen, the subset of filegroups and files of the selected database must be marked by using the Properties dialog box. “Task 4: Set the restore properties (optional)” on page 75 provides more information.
- For piecemeal restore, several of the selections you may make in the Properties dialog box will be reset if you revisit the Properties dialog box again before starting the restore process.

The selections that will be reset include:

- Marked files and filenames of the selected database.
- Name for restored database option (Files tab).
- Back up the active portion of the transaction log before restoring the database checkbox (General tab).

Redisplaying the Properties dialog box in this type of restore causes the previous selections of these options to be removed. Figure 6 on page 27 identifies the message displayed when this occurs.

![Figure 6 Restore Options error message](image)

When the copy restore type is chosen, filegroups and files of the selected database are automatically marked and restored as part of the full database restore.
Error logs for backup and recovery

To help you diagnose problems, the following types of information are written to an application-specific log file during backup and restore operations:

- Software configuration information
- Operation parameters
- Operation status and error messages

The log files are written into the `nsr\applogs` folder on the SQL Server host. The log files are cumulative and are appended each time the `nsrsqslsv` or `nsrsqrlrc` program runs. Log space management is crucial because the log file is truncated when disk space is exhausted. Table 5 on page 28 cross-references the program and log file names.

<table>
<thead>
<tr>
<th>Program</th>
<th>Log file</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nsrsqslsv</code></td>
<td><code>nsrsqslsv.log</code></td>
</tr>
<tr>
<td><code>nsrsqrlrc</code></td>
<td><code>nsrsqrlrc.log</code></td>
</tr>
<tr>
<td>XBSA library code</td>
<td><code>xbsa.messages</code></td>
</tr>
</tbody>
</table>

The logging capabilities of `nsrsqslsv` and `nsrsqrlrc` are not cluster-aware. For both clustered and nonclustered configurations, the logs are stored on a local disk. The `xbsa.messages` file collects messages from the X-Open Backup Services application programming interface.

Note: With localization support, `nsrsqslsv.raw` and `nsrsqrlrc.raw` are generated by `nsrsqslsv.exe` and `nsrsqrlrc.exe`. The `nsr_render_log.exe` program is needed to render the `.raw` files to language-specific `.log` files.
This chapter explains how to use the NetWorker User for SQL Server program to manually back up Microsoft SQL Server databases. It includes the following sections:

- About manual backups .. 30
- Performing a backup with NetWorker User for SQL Server 31

Read this chapter and Chapter 4, “Restoring SQL Server Data,” before performing a backup or restore operation. The type and level of backup impacts the type of restore that can be performed. For example, regularly scheduled, full-level backups are required to enable recovery from a disaster situation.
About manual backups

You can initiate a manual backup of Microsoft SQL data at any time. A manual (unscheduled) backup can be started immediately. When a manual backup is run from a NetWorker server that is a client host, only data stored on that SQL Server host can be backed up.

Note: Manual backups are performed using the traditional method of backing up. You cannot start a snapshot backup manually.

The following combinations of data objects can be backed up by using the NetWorker Module for Microsoft SQL Server:

◆ The entire SQL Server storage hierarchy
◆ One or more entire databases
◆ One or more filegroups
◆ One or more files in a filegroup
◆ A heterogeneous collection of files, filegroups, and databases
◆ Transaction log backups

Note: Filestream data, stored in SQL Server 2008 databases, is displayed in the backup window as a single filegroup folder with no subordinate objects.

The storage hierarchy is defined as the database storage components exposed to third-party backup vendors by the SQL Server Storage Engine. The storage components include files, filegroups, databases, and transaction logs.

Perform a manual backup by using either of the following interfaces on the SQL Server:

◆ The NetWorker User for SQL Server program. “Performing a backup with NetWorker User for SQL Server” on page 31 provides instructions.

Note: A manual backup started from the NetWorker User for SQL Server program can only be performed at level full.

◆ The nsrsqlsv command from the command prompt. “Using the nsrsqlsv command” on page 123 provides command syntax.

To run the nsrsqlsv command, you must log into an account on the NetWorker client host that has SQL Server administrative privileges.

When performing a manual level-full backup of a file or filegroup, also perform a database incremental-level backup to maintain the validity of the transaction log.

The best way to protect Microsoft SQL data is to schedule regular backups. Manual backups are generally performed under special circumstances, such as during set up of the NetWorker Module for Microsoft SQL Server. Due to the complexity of configuring scheduled backups, you should first either perform a traditional manual backup, or use the NetWorker Configuration Wizard to configure a basic scheduled backup.
Performing a backup with NetWorker User for SQL Server

The NetWorker User for SQL Server program is a graphical user interface that is used to perform manual backups and restores initiated by the client. The Backup window of the NetWorker User for SQL Server program displays data that is available for backup based on the SQL Server database settings. SQL database items that cannot be backed up are not displayed in the Backup window.

This includes, but is not limited to, databases in the following states:

- Standby
- Offline
- Not recovered
- Loading
- Prerecovery
- Single user with active user connections

Note: This module does not support manual snapshot backup from either NetWorker User for SQL Server program or command prompt.

To perform a manual backup, complete the following tasks:

- “Task 1: Start the NetWorker User for SQL Server program” on page 31
- “Task 2: Select the SQL Server data” on page 32
- “Task 3: Set the backup options” on page 33
- “Task 4: Set the backup properties for each marked database” on page 34
- “Task 5: Start and monitor the backup” on page 35
- “Task 6: Back up the client indexes and bootstrap file” on page 36

Task 1: Start the NetWorker User for SQL Server program

To start the NetWorker User for SQL Server program:

1. From the Start menu, select Programs > EMC NetWorker > NetWorker User for SQL Server.

 If multiple instances of SQL Server are active on the computer, the Select SQL Instance dialog box is displayed, as in Figure 7 on page 31.

Figure 7 Select SQL Instance dialog box
2. Select the SQL Server instance that the NetWorker Module will back up, and click OK.

NetWorker User for SQL Server connects to the selected instance. The main window is displayed.

3. (Optional) Perform the following to select a NetWorker server other than the server that was specified during the NetWorker Module for Microsoft SQL Server installation:
 a. Click the Select NetWorker Server button on the toolbar.

 The Change Server dialog box is displayed, as in Figure 8 on page 32.

 b. Select a NetWorker server from the list, and click OK.

Task 2: Select the SQL Server data

When performing a backup by using the NetWorker User for SQL Server program, the NetWorker server always performs a full backup of the SQL Server data.

To select the SQL Server data to back up:

1. Select Backup from the Operation menu.

 The Backup window opens and displays a hierarchical list of SQL Server data objects available for backup, as in Figure 9 on page 32.

 2. To expand an object, click the plus sign (+) beside the object name in the left pane.

 The descendants of the object are listed in the right pane.
3. Mark one or more objects for backup. “Marking items” on page 26 provides complete details on marking or unmarking items.

Some SQL Server data items are visible in the Backup window, but cannot be marked. If certain database options are set, SQL Server prohibits a file or filegroup backup. These unavailable objects appear dimmed to distinguish them from those that are available to back up. “Display conventions” on page 26 provides more information on these icons.

Task 3: Set the backup options

To set backup options:

1. Select the required attributes in the **Backup Options** dialog box before starting the backup.

 The selected attributes apply to each marked object for all backup operations performed until the NetWorker User for SQL Server program is closed. Selected pools, however, are stored in the registry and persist from one session to another. If an attribute is not selected, then the NetWorker User for SQL Server default is used. Figure 10 on page 33 provides a sample.

 ![Backup Options dialog box](image)

 Figure 10 Backup Options dialog box

2. On the **General tab**, select the appropriate attributes:

 - **Compress the backup content (using SQL Server)**

 Applies SQL data compression for SQL Server 2008 data. The Microsoft SQL Server 2008 product documentation provides more information.

 - **Compress the backup content (using NetWorker)**

 Applies XBSA compression to all marked databases before writing the backup data to the storage device. In the same manual backup, certain databases cannot be backed up with compression and others without.

 Compressing data for a backup generates less network traffic and uses less backup media space, but it consumes additional CPU resources. Most tape devices perform compression, which makes software compression unnecessary.
• Create a striped backup
 Creates a striped backup by using the SQL Striped feature. If this attribute is checked, the Stripes list is enabled. Appendix B, “Striped Backup and Recovery,” provides more information about striping.

 To select the number of striped for backup, select a number from the list box.

 The maximum number of stripes the NetWorker Module software supports is 32. However, the maximum number of stripes cannot be more than the value set for NetWorker parallelism.

• Use pools for media management
 Lists media volume pools for storing the backup contents. This attribute applies only to manual backup operations performed from the NetWorker User for SQL Server program or from a command prompt. If this attribute is checked, the Full Backup Pool and the Log File Pool lists are enabled.

 To select volume pools:
 a. Check the Use Pools for Media Management attribute.
 b. Select a pool from the Full Backup Pool list to store full SQL Server backups, including databases and filegroups.
 c. Select a pool from the Log File Pool list to store transaction log or differential (level 1) SQL Server backups.

 Note: The pool names in the Full Backup Pool or Log File Pool lists are initially created by using the NetWorker Management Console, and are stored in the operating system registry.

• Select debug level
 Defines the level of debug information to be sent to the backup status window during the backup operation. Levels range from 1-9, with 1 representing the least amount of information.

• Use encryption
 Specifies that data is backed up with AES encryption. Data is encrypted with the default or current pass phrase provided by the NetWorker Server. If the NetWorker Server has a different pass phrase at recovery time, you must specify the pass phrase used at the time of backup. The EMC NetWorker Administration Guide provides complete information about AES encryption, and setting the pass phrase.

3. Click OK to close the Backup Options window.

Task 4: Set the backup properties for each marked database

Set backup properties for each marked database before starting the backup operation. If a property is not specified, the default is used. After the backup operation is complete, and the Backup window is closed, the property values revert back to the NetWorker User for SQL Server defaults.
To set the backup properties for each marked database:

1. Mark one or more databases in the Backup window, and then right-click each marked database and select **Properties** from the shortcut menu.

 The **Properties** dialog box is displayed, as in Figure 11 on page 35.

![Properties dialog box](image)

Figure 11 Properties dialog box

2. Select the appropriate options:

 - **Truncate content before performing backup**

 Truncates the transaction logs before backup.

 - **Perform checksum before writing to media**

 Performs a checksum operation with the backup and saves the information to the backup media. Another checksum is performed before a restore to ensure that it matches the backup.

 A checksum is used to detect a partial backup or restore state. The NetWorker Module for Microsoft SQL Server verifies the checksum by calculating a local result and comparing it with the stored value. If the values do not match, you can choose to continue the backup or restore operation.

 - **Select the Continue on checksum error option** to back up and restore if errors are detected.

 Note: This option is available with SQL Server 2005 and SQL Server 2008 instances.

3. Click **OK**.

Task 5: Start and monitor the backup

A backup cannot run if there is no media volume mounted in the backup device. Before starting a backup, ensure that a labeled media volume is mounted in the backup device. The volume should be labeled for the volume pool where the backup is to be directed. If there is no volume in the backup device when a backup is started, no messages appear in the Backup Status window and the backup waits for operator intervention.
To start the backup:

1. Select **Start Backup** from the **File** menu.
2. Monitor the backup messages in the **Backup Status** window or from the NetWorker Management Console.

 After the backup is finished, a **Backup Completed** message is displayed.

 Note: The amount of time to back up a database depends on database size, network traffic, server load, and tape positioning.

3. Close the **Backup Status** window.

 To cancel a backup, select **End Backup** from the **File** menu.

Task 6: Back up the client indexes and bootstrap file

Performing a manual backup of SQL Server data does not automatically back up the client indexes and bootstrap file.

To back up client indexes and a bootstrap file:

1. Log in as one of the following:
 - As root on a UNIX NetWorker server.
 - As administrator on a Windows NetWorker server.

2. Enter the following command from the command line:

   ```shell
   savegrp -O -l full -P printer_name -c NetWorker_client
   ```

 where:

 - `printer_name` is the name of the printer where the bootstrap information is printed at the end of the bootstrap backup.
 - `NetWorker_client` is the hostname of the SQL Server.
This chapter explains how to configure scheduled backups of SQL Server data.

This chapter includes the following sections:

- About scheduled backups ... 38
- Setting backup levels ... 39
- Configuring scheduled backups ... 42
- Unavailable databases and group backup failure 48
About scheduled backups

The most reliable way to protect Microsoft SQL data is to schedule backups of the SQL Server to run at regular intervals. Scheduled backups ensure that all SQL Server data is automatically saved, including the NetWorker server’s client indexes and bootstrap file. The client indexes and bootstrap file are vital for restoring data to the SQL Server in the event of a disaster.

Scheduling backups for NetWorker Module for Microsoft SQL Server is similar to scheduling NetWorker file system backups. On the NetWorker server, appropriate attribute values must be set for various resources, such as Policy, Group, and Client resources. This is done by an administrator with a working knowledge of the NetWorker software through the NetWorker Management Console. Scheduled backups can be configured to run at any time and use backup levels full, incremental, and differential (level 1-9).

Backups can also be scheduled with the NetWorker Configuration Wizard, available with NetWorker release 7.5 or later. The wizard integrates with the NetWorker Module for Microsoft SQL Server by prompting users for information, such as:

- Backup type
- Objects to back up
- Recovery level
- Schedule preferences
- Microsoft SQL administrator account information

Once the wizard creates a resource, that resource can then be edited by using the NetWorker Management Console.

The EMC NetWorker Installation Guide provides instructions on how to install and use the NetWorker Configuration Wizard.

Once NetWorker and the configuration wizard are installed, you can choose to install the NetWorker Module for Microsoft SQL Server component from the wizard. The EMC NetWorker Module for Microsoft SQL Server Installation Guide provides installation instructions.

IMPORTANT

Though multiple backups can be scheduled to run concurrently, this is not recommended. Overlapping backups will not restore data correctly. Make sure that scheduled backups do not run concurrently.
Setting backup levels

The NetWorker Module for Microsoft SQL Server enables you to specify backup levels in addition to database full, database differential, and database incremental. The availability of a backup level depends on the type of data selected for backup and any SQL Server settings on those objects, as listed in Table 6 on page 39.

Table 6 Backup levels for SQL Server data

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All databases, including MSSQL:</td>
<td>yes</td>
</tr>
<tr>
<td>Specified databases</td>
<td>yes</td>
</tr>
<tr>
<td>All filegroups in specified databases</td>
<td>yes</td>
</tr>
<tr>
<td>Filestream data in specified databases</td>
<td>yes</td>
</tr>
<tr>
<td>Specified filegroups in specified database</td>
<td>yes</td>
</tr>
<tr>
<td>Specified files in filegroups in specified databases</td>
<td>yes</td>
</tr>
</tbody>
</table>

Note: An incremental file, filegroup, or database backup can only be created when the SQL Server database options are properly configured. For more information, refer to the Microsoft SQL Server documentation. Individual items are subject to promotion. “Promoting backup levels” on page 41 provides more information.

Strategies for backing up SQL Server data

If the SQL Server manages a significant amount of data, schedule a backup of the databases every one to two weeks, as shown in Table 7 on page 39.

Table 7 Full backup every one to two weeks

<table>
<thead>
<tr>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>incr</td>
<td>incr</td>
<td>incr</td>
<td>incr</td>
<td>diff</td>
<td>incr</td>
</tr>
<tr>
<td>incr</td>
<td>incr</td>
<td>incr</td>
<td>diff</td>
<td>incr</td>
<td>incr</td>
<td>incr</td>
</tr>
<tr>
<td>full</td>
<td>Repeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Another backup strategy is to schedule incremental backups on several successive days immediately following the previous full backup, as shown in Table 8 on page 39. This schedule backs up all data that has changed since the previous incremental backup.

Table 8 Incremental backup after a full backup

<table>
<thead>
<tr>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>incr</td>
<td>incr</td>
<td>incr</td>
<td>diff</td>
<td>incr</td>
<td>incr</td>
</tr>
<tr>
<td>Repeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A level 1 differential backup can also be scheduled after several days of incremental backups. This schedule backs up all data since the previous full backup.
Scheduled Backups

Note: If a database has been made read-only, a full backup of the database should be made. A read-only database cannot be restored from a transaction log backup that may already exist.

EMC NetWorker Administration Guide provides further details and examples of planning backup strategies and creating schedules.

Differences between backup levels

Because it may not be practical or efficient to run full backups every day, other backup levels can be specified for automatic, scheduled backups. Limiting the frequency of full backups can decrease server load while ensuring data is protected.

Consider the following when selecting backup levels:

- Full backups take more time than differential backups, while differential backups take more time than incremental backups. However, restoring data immediately following a differential backup is generally faster than restoring data following a number of successive incremental backups.

- If you have only a stand-alone storage device and a full backup does not fit on a single media volume, an operator must monitor the backup. This way, the volume can be changed at the appropriate time.

An incremental backup saves only transactions that have occurred since the most recent full or transaction log backup. For this reason, using incremental backups can simplify and expedite database recovery.

Table 9 on page 40 outlines the differences between the backup levels.

Table 9 Backup level advantages and disadvantages

<table>
<thead>
<tr>
<th>Backup level</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>• Fastest restore time.</td>
<td>• Slow backup.</td>
</tr>
<tr>
<td></td>
<td>• Increases load on client, server, and network.</td>
<td>• Uses the most volume space.</td>
</tr>
<tr>
<td></td>
<td>• Uses the most volume space.</td>
<td></td>
</tr>
<tr>
<td>Incremental (transaction log)</td>
<td>• Faster than a full backup.</td>
<td>• Slow restore.</td>
</tr>
<tr>
<td></td>
<td>• Decreases the load on server and uses the least volume space.</td>
<td>• Data can spread across multiple volumes.</td>
</tr>
<tr>
<td></td>
<td>• Enables point-in-time restore.</td>
<td>• Multiple transaction logs can spread across multiple volumes.</td>
</tr>
<tr>
<td>Differential</td>
<td>• Faster than a full backup.</td>
<td>• Generally more time-consuming than an incremental backup (depending on the backup schedule strategy).</td>
</tr>
</tbody>
</table>
Combining data objects to create backup levels

The NetWorker Module for Microsoft SQL Server enables the selection of SQL Server data objects in various combinations to create scheduled backups of different levels, as shown in Table 10 on page 41.

Table 10 Creating additional backup levels with data objects

<table>
<thead>
<tr>
<th>Backup level</th>
<th>Database objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full database</td>
<td>Select one or more databases to create a level full database backup of the selected databases and their transaction log files.</td>
</tr>
<tr>
<td>Full file or filegroup</td>
<td>Select one or more files or one or more filegroups to create a level full file or filegroup backup of the selected files or filegroup, but not their transaction logs.</td>
</tr>
<tr>
<td>Database incremental</td>
<td>Select one or more databases to create a database incremental level backup of only the incremental for the selected databases. The SQL database must be preconfigured to enable incremental backups.</td>
</tr>
<tr>
<td>Database differential (level 1)</td>
<td>Select one or more databases to create a database level differential backup of only the changes made to the selected databases since the last full-level backup was created.</td>
</tr>
<tr>
<td>File or filegroup differential</td>
<td>For SQL Server 2000 and 2005 only; select one or more files, or one or more filegroups to create a file or filegroup level differential backup of only the changes made to the selected files or filegroups since the last full level backup was created.</td>
</tr>
</tbody>
</table>

Promoting backup levels

Guidelines for Microsoft SQL Server best practices indicate that a full database backup should be the first step in implementing a recovery strategy for a database. In adhering to these guidelines, the NetWorker Module supports backup level promotion. Table 11 on page 41 explains what prompts a promotion.

Table 11 Backup level promotion process

<table>
<thead>
<tr>
<th>Item</th>
<th>Requested level</th>
<th>Level of promoted</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>Differential</td>
<td>Full</td>
<td>Database full backup does not exist or was not performed by NetWorker.</td>
</tr>
<tr>
<td>Database</td>
<td>Incremental</td>
<td>Full</td>
<td>• Database full backup does not exist or was not performed by NetWorker.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Database does not support incremental (transaction log) backups.³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Database is currently in emergency mode.²</td>
</tr>
<tr>
<td>File/Filegroup</td>
<td>Full</td>
<td>Database full</td>
<td>Full backup of the entire database does not exist or was not not performed by NetWorker.²</td>
</tr>
<tr>
<td>File/Filegroup</td>
<td>Differential</td>
<td>Database full</td>
<td>Full backup of the entire database does not exist or was not not performed by NetWorker.²</td>
</tr>
<tr>
<td>File/Filegroup</td>
<td>Incremental</td>
<td>Full</td>
<td>File/filegroup incremental backups are not supported.</td>
</tr>
</tbody>
</table>

a. Refer to the Microsoft SQL Server Books Online for more information.

b. Databases consist of files and groups that contain files. The default configuration is a primary filegroup with the main data file. Elaborate database configurations can contain more filegroups; each with more files. If a filegroup or file level backup is specified, and a full database backup is not on record, the filegroup or file backup is promoted to a database full backup.
Scheduled Backups

Configuring scheduled backups

Configure scheduled backups by using either the NetWorker Configuration Wizard or the NetWorker Management Console. For instructions on using the wizard to configure a basic scheduled backup, refer to the EMC NetWorker Release Notes.

To configure scheduled backups by using the NetWorker Management Console, complete the following tasks:

- “Task 1: Assign a Snapshot policy (optional)” on page 42
- “Task 2: Configure one or more group resources” on page 43
- “Task 3: Configure one or more Client resources” on page 43
- “Task 4: Configure a schedule and set backup levels” on page 45
- “Task 5: Configure the NetWorker volume pools” on page 46

Before beginning these tasks, make sure the NetWorker interface is configured to display hidden attributes.

For NetWorker 7.3 and later servers, hidden attributes are called diagnostic attributes. To display diagnostic attributes in the Administration window, select Diagnostic Mode from the View menu.

The NetWorker Module for Microsoft SQL Server can back up to a NetWorker server that is running on any supported operating system. The appropriate version of EMC NetWorker Administration Guide provides instructions on using the NetWorker Management Console program to configure NetWorker server resources.

Task 1: Assign a Snapshot policy (optional)

If the NetWorker PowerSnap Module is installed, assign a preconfigured or custom snapshot policy on the NetWorker server. This guide provides only the snapshot configuration information that is relevant to the NetWorker Module for Microsoft SQL Server.

- The EMC NetWorker Administration Guide provides information about creating a custom snapshot policy.
- The NetWorker PowerSnap Module Guides appropriate for the storage subsystem provide instructions on setting the required NetWorker server resources for snapshot operations.

Table 12 on page 42 shows a sample snapshot policy that creates four snapshots per day. Only the first snapshot is moved to secondary storage. All snapshots are deleted from primary storage after 24 hours.

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Sample snapshot policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Four Snaps Daily</td>
</tr>
<tr>
<td>Comment</td>
<td>Snapshot policy for SQL Server backups</td>
</tr>
<tr>
<td>Number of Snapshots</td>
<td>4</td>
</tr>
<tr>
<td>Snapshot Expiration Policy</td>
<td>4</td>
</tr>
<tr>
<td>Retain Snapshots</td>
<td>Day</td>
</tr>
<tr>
<td>Backup Snapshots</td>
<td>First</td>
</tr>
</tbody>
</table>
Task 2: Configure one or more group resources

A NetWorker backup group is a set of NetWorker Client resources, all of which start backing up data at a specified time once the Autostart feature is enabled and the backup start time is specified in the Group resource. You can assign one or more SQL Server hosts to a NetWorker backup group.

NetWorker software provides a preconfigured group named Default. The Default group’s attributes can be modified, but the Default group cannot be deleted from the list of NetWorker groups. The Default group has the following attributes:

- Autostart = Disabled
- Start time = 3:33
- Client retries = 1
- Clones = No
- Clone pool = Default Clone
- Interval = 24:00
- Snapshot = False
- Snapshot Policy = Daily
- Snapshot Pool = Default

To assign the SQL Server host to another group with different attributes, create a group in the NetWorker Management Console before creating a NetWorker Client resource for the SQL Server host. The EMC NetWorker Administration Guide provides complete instructions on creating backup groups.

To back up several large SQL Server databases, consider creating a separate backup group with a different start time for each database. Any number of backup groups can be created to help reduce network traffic or load on the NetWorker server.

When selecting a start time for each group, schedule the groups far enough apart for one group to complete its backup before the next group starts. Choose times when there is little network activity, for example, nights and weekends.

Task 3: Configure one or more Client resources

A NetWorker Client is a resource configured on the NetWorker server. This resource defines the following information:

- Client data to back up
- Backup schedule for the client
- Browse policy for the backup data
- Retention policy for the backup data

Each SQL Server host to be backed up must be configured as a NetWorker client in the NetWorker Management Console. In addition, multiple SQL Server databases that exist on the same SQL Server host can be configured as separate NetWorker clients.
Scheduled Backups

For each Client resource, the NetWorker server does the following:

- Maintains the Client resource information, including entries in the online client file index and media database.
- Contacts the clients listed in a backup group configured on the server.
- Performs the scheduled backups when a client request is received.
- Restores the data upon request from the client.

Table 13 on page 44 describes the settings used when creating a NetWorker client for a SQL Server host.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetWorker Module requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter the SQL Server's hostname. If you create multiple Client resources for the same SQL Server, use the same name for each.</td>
</tr>
<tr>
<td>Comment</td>
<td>If using multiple Client resources for the same SQL Server host, enter a comment to identify the purpose of each.</td>
</tr>
<tr>
<td>Save Set</td>
<td>Specify any valid save set names, for example: MSSQL: or MSSQL:dbName1 [MSSQL:dbName2 MSSQL:dbName3 ...] For example, entering only MSSQL: always yields a backup of all databases on the SQL Server host. A snapshot backup fails if more than one database, or MSSQL: is specified for the Save Set attribute. For snapshot backups, list only one database for the Save Set attribute.</td>
</tr>
<tr>
<td>Group</td>
<td>Select a backup group. “Task 2: Configure one or more group resources” on page 43 provides more information.</td>
</tr>
<tr>
<td>Schedule</td>
<td>Select a backup schedule. “Task 4: Configure a schedule and set backup levels” on page 45 provides more information.</td>
</tr>
<tr>
<td>Browse Policy</td>
<td>Select a browse policy to specify how long the NetWorker server retains client file index entries.</td>
</tr>
<tr>
<td>Retention Policy</td>
<td>Select a retention policy to specify how long the NetWorker server retains media entries for the client's backups.</td>
</tr>
<tr>
<td>Storage Node</td>
<td>If the NetWorker server has one or more remote storage nodes that are to be used for backing up the SQL Server's data, enter the name of each storage node in the order they are to be used. The default storage node, nsrserverhost, represents the NetWorker server.</td>
</tr>
<tr>
<td>Backup Command</td>
<td>Enter the nsrsqlsv command and any necessary command options. “Using the nsrsqlsv command” on page 123 provides information about nsrsqlsv options. For virtual server backups, the -a virtual_server_name command option is required.</td>
</tr>
<tr>
<td>Remote Access</td>
<td>Enter the user ID or hostnames of other clients for the Remote Access attribute. This grants to those hosts copy restore type permission, which enables the named hosts to access the NetWorker server and receive directed recover data. If this attribute is left empty, only administrators and users logged on to the SQL Server host have access. For a serverless backup, this attribute must include the proxy client hostname.</td>
</tr>
</tbody>
</table>
Task 4: Configure a schedule and set backup levels

As a NetWorker client, a SQL Server’s backup schedule is controlled by a Schedule resource on the NetWorker server. The schedule determines what level of backup (for example, full or incremental) is performed on a given day. “Setting backup levels” on page 39 provides implementation details and examples.

The NetWorker server provides several preconfigured schedules, such as the Default schedule. Custom schedules can be created or preconfigured schedules can be modified them to meet your needs.

To create a backup schedule:
1. From the NetWorker Management Console open the Administration window and click Configuration.
2. In the expanded left pane, select Schedules.
3. From the File menu, select New.
4. In the Name attribute, enter a name for the schedule.
5. From the Period attribute, select Week or Month:
 - Select Week to create a weekly backup schedule. For example, if a full backup for a Friday is selected, every Friday will have a full backup.
 - Select Month to create a monthly schedule. For example, if a full backup for the first of the month is selected, every month will have a full backup on the first of the month.
6. Select a backup level for each day in the weekly or monthly period:
 a. Select a day.
 b. Right-click and from the Set Level menu, select a backup level.
7. If required, select an override backup level for any day. An override occurs once only for the selected day.
 a. Select a day.
 b. Right-click and from the Override Level menu, select a backup level.
8. Click OK.

Table 13 Client resource attribute settings (page 2 of 2)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>NetWorker Module requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote User</td>
<td>To enable the NetWorker Module for Microsoft SQL Server to back up the SQL Server virtual server and/or a mirrored server, enter the username for a Windows user account that has SQL Server administrator privileges. For mirroring, this should be the same user account and password that were used to set up the mirroring relationship. If multiple accounts have been set up, only one needs to be specified. Per Microsoft SQL documentation, a domain account must be used to set up the mirroring relationship.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the password for the Remote User account.</td>
</tr>
<tr>
<td>Aliases</td>
<td>Enter all known aliases for the SQL Server host in the Aliases attribute on the Preference tab, as in the following example: mars mars.legato.com Include both the DNS short name and long name for the SQL Server host.</td>
</tr>
</tbody>
</table>
Scheduled Backups

To assign a schedule to a group:
1. In the expanded left pane, right-click the group name under Groups, and select Properties.
2. In the Advanced tab of the Properties dialog box, select a schedule.

To assign a schedule to a client:
1. In the expanded left pane, select Clients.
2. In the right side pane, right-click a client name and select Properties.
3. In the General tab of the Properties dialog box, select a schedule.

Task 5: Configure the NetWorker volume pools

With the NetWorker server software, backups can be directed to groups of media or backup volumes called pools. A pool is a specific collection of volumes to which the NetWorker server writes data. The NetWorker server uses pools of volumes to sort and store data. The configuration settings for each pool act as filters that tell the server which volumes should receive specific data. The NetWorker server uses pools in conjunction with label templates to keep track of what data is on each specific volume.

For scheduled backups, the NetWorker Module for Microsoft SQL Server uses the criteria defined in the NetWorker Management Console. Pool settings specified in the Backup Options dialog box of the NetWorker User for SQL Server program apply only to manual backups. “Task 3: Set the backup options” on page 33 provides more information on pools used by the NetWorker User for SQL Server program.

To create, modify, or remove a Pool resource for scheduled backups, use the NetWorker Management Console. The EMC NetWorker Administration Guide provides more information on volume pools and how to configure NetWorker Pool and Label Template resources.

Task 6: Test the Configuration

You can test the backup configuration by starting a backup group manually from the NetWorker Management Console. The NetWorker server immediately backs up the clients in the group, overriding the scheduled backup start time. Each client in the group is backed up at the level defined by the schedule that is selected in the client’s Schedule attribute.

To write the results of a scheduled backup to a log file, enter the following in the Action attribute of the NetWorker Notification resource:

- For UNIX, enter:

 /usr/ucb/logger

- For Windows, enter:

 nserlog -f filename

 where filename is the name of a file to which the backup results are written.

The EMC NetWorker Administration Guide provides instructions on configuring Notification resources.
You can override the scheduled backup start time and start the group manually. This is equivalent to selecting Start Now in the Autostart attribute of the Group resource.

Note: When a group backup is started manually, the NetWorker server runs the backup at the level of the next scheduled backup, such as full, level [1 – 9], incremental, or consolidated.

To manually start a group backup:

1. Open the NetWorker Management Console. From the Administration window, click **Monitoring**.
2. Click the **Groups** tab.
3. Right-click the group to start, then select **Start**.
4. Click **Yes** to confirm the start.

The NetWorker server immediately backs up the clients in the group, overriding the scheduled backup start time. The group icon changes to the clock icon until the backup has completed or is interrupted. The *EMC NetWorker Administration Guide* provides more details.
Unavailable databases and group backup failure

The group containing a scheduled backup of a NetWorker SQL Server by using the MSSQL: saveset to back up all databases fails if any database is unavailable. This does not mean complete failure, but rather that one or more databases were not backed up successfully. A database that is in any of the following states will cause a scheduled backup to fail:

- Standby
- Offline
- Not recovered
- Loading
- Prerecovery

Note: For nonscheduled manual backups that are initiated from the SQL Module on the client computer, unavailable databases are silently skipped.

Limitations of the savegrp program reporting and savegrp log file may make failure identification and the specific unavailable databases difficult to isolate. The savegrp information is displayed alphabetically, leaving some early information suppressed, and the success or failure information combined.

Definitive results are available in the daemon.log file, located on the NetWorker server and in the nsrsqlsv.log file on the client computer. After the completion of a backup, the following types of error messages are listed in the daemon.log file:

- Database 'Acme' cannot be opened because it is offline.
- Processing Acme failed, the item will be skipped.
- Database 'Acme' is in warm-standby state (set by executing RESTORE WITH STANDBY) and cannot be backed up until the entire load sequence is completed.
- Processing Acme failed, the item will be skipped.
This chapter describes the steps required to restore Microsoft SQL Server data by using the NetWorker User for SQL Server program and includes the following sections:

- Before the restore ... 50
- Backing up the active portion of the transaction log 52
- NetWorker Module database restore process 54
- Performing a restore with NetWorker User for SQL Server 55
Restoring SQL Server Data

Before the restore

The Restore window contains database objects available for restoring. Based on the restore type selected, restore windows restrict the marking of database objects. The normal and verify-only restore types do not restrict the marking of database objects in the browse window. However, the partial/piecemeal and copy restore types allow only database objects to be marked for restore. “Restore window restrictions” on page 27 provides more information on restore restrictions.

Note: To restore SQL Server data, use the NetWorker User for SQL Server program or the nsrsq1rc command. You cannot restore SQL Server data by using the NetWorker Management Console, nor can you restore data that was backed up by third-party vendors.

Note: Read the Microsoft SQL Server product documentation to understand the limitations associated with recover types on the various SQL Server versions.

Before starting a restore, complete the following preparations:

- Ensure that the NetWorker server software is running on the appropriate host and the NetWorker Remote Exec Service is started on the SQL Server host.
- Restoring the SQL master database requires a restart of the SQL instance in single user mode followed by a log on to that instance. Single user mode only allows one administrator to log on. Make sure no other applications or services are waiting for or attempting to log on to the SQL instance.
- If a backup of another database is in progress, wait for it to finish. Microsoft SQL Server will not restore a database while another database backup is in progress.
- If a SQL Server startup is in progress, wait for it to finish before starting a restore operation.
- Review the ERRORLOG file to determine if a database is currently being recovered or search the ERRORLOG file for the “Recovery complete” string.

 If the nsrsq1rc program is started while the SQL Server is recovering databases, the following error message appears:

 Could not find database ID. Database may not be activated yet or may be in transition.

- Ensure that all database users are logged off the database. A restore fails if other users try to use the database during the restore operation.

 Note: In SQL Server 2005 or 2008, if the primary filegroup is not under restore, then the online (piecemeal) restore functionality allows user access to a database while backup or restore is in progress.

- Restoring SQL Server 2008 filestream data requires that the SQL Server filestream feature be enabled on the recovery server.
- SQL backups consist of two save sets. One save set is for the data, and the other save set contains the meta data. The logical object save set (meta data) is the smaller save set. It contains information required to restore the SQL database.

 In order to be able to restore a SQL database using the NetWorker Module, the SQL object and the logical object (meta data) save sets must be present in the media database. When scanning a SQL save set, make sure both save sets are available in the media database.
Rollback restore requirements

The following should be considered before a rollback recovery can be performed:

- The database files that are being recovered are the only file system objects on the volume. Additionally there should not be any other database files belonging to other databases on the volume.

- If there are other file system objects in the volume before the rollback, but they were not backed up by using PowerSnap, they will be damaged by the recover operation. The rollback operation checks for additional file system objects and does not start the rollback unless the force option (-F) is used, or the file system object is specified in the /nsr/res/psrollback.res file.

- Filegroups cannot be properly recovered with snapshot backups.

When performing a rollback recovery, consider how this affects future snapshots. Delete the original snapshot, and all subsequent snapshots that existed prior to when the rollback was performed. This information is maintained in the client file index on the NetWorker server. If this information is not deleted the following occurs:

- Future snapshots accumulate on invalid data.

- SQL Module restore operations fail if based on old client file index information.

The EMC NetWorker PowerSnap Module guides provide more information about rollback recovery.

Piecemeal restore requirements

Microsoft SQL Server 2005 or 2008 Enterprise Edition databases consisting of multiple filegroups can be restored in stages with piecemeal restore.

Partial restore in SQL Server 2000 is a one-stage process that restores part of a database to a different location. With Partial restore, the primary filegroup must be part of each partial restore. The database remains offline during the restore process. NetWorker Module for Microsoft SQL Server supports partial restore for SQL Server 2000.

Piecemeal restore is a multistage process that restores a database to itself or to another location. The initial stage must include the primary filegroup and optionally other filegroups. Once the primary filegroup is restored, you can bring the database online and continue restoring the remaining filegroups in subsequent stages.
Restoring SQL Server Data

Back up the active portion of the transaction log

SQL Server 2005 or 2008 requires users to perform a backup of the active portion of the transaction log prior to restore. If you are restoring a SQL Server 2005 or 2008 database, first backup the active portion of the log without the recovery option. The NetWorker User for SQL Server program will automatically back up the active portion of the transaction log prior to restoring a SQL Server database.

If you are restoring a file or filegroup of a database which resides on either SQL Server non-Enterprise Edition instance, first back up the active portion of the transaction log. The transaction log back up must be applied to the file or filegroup restore to ensure the file or filegroup is consistent with the rest of the database. If a file or filegroup is restored by using the NetWorker User for SQL Server program, this transaction log backup occurs automatically.

If you are restoring a secondary filegroup (or a file belonging to a secondary filegroup) of a database residing on SQL Server 2005 or 2008 Enterprise Edition, you do not need to back up the active portion of the transaction log before restoring the file or filegroup. Instead, a backup of the active portion of transaction log should be taken after restoring the file or filegroup. The transaction log backup taken should then be applied to ensure that the file or filegroup is consistent with the rest of the database. If the secondary filegroup (or file belonging to the secondary filegroup) is restored by using NetWorker User for SQL Server program, the transaction log backup occurs automatically.

Note: If you are performing a normal or piecemeal restore of a SQL Server instance, the active portion of the transaction log backup (referred to as a transaction log backup) happens automatically through the NetWorker User for SQL Server program as part of the restore process. If you are performing a restore operation from the command line, first back up the active portion of the transaction log then restore data.

This option should not be selected if performing a rollback restore with a database in Simple restore mode. There is no log backup in Simple mode. If the option to back up the log is selected, a full backup of the log is performed on a database that is set to be recovered.
Backing up the transaction log

To use the command line to restore the file or filegroup, the transaction log backup must be explicitly performed by using the `nsrsqlsv` command as follows:

```
nsrsqlsv [ -s NetWorker_server_name ] -l incr -R -H dbName
```

where:

- `NetWorker_server_name` is the hostname of the NetWorker server.
- `dbName` is the name of the database that receives the transaction log backup.
- The `-R` flag is required so the transaction log is not truncated after the backup completes.
- The `-H` option uses the NORECOVERY option when backing up transaction logs. It leaves the database in Restoring state.
 - Do not use the `-H` option with versions previous to SQL Server 2005.
 - Use the `-H` option:
 - To back up the transaction log prior to database restore or primary filegroup restore on SQL Server Enterprise Edition.
 - To back up the transaction log prior to database restore or filegroup or file restore on non-Enterprise editions of SQL Server.

Note: If you use third-party vendor software to back up SQL Server data, after completing the backup, you must perform a full database backup with the NetWorker Module for Microsoft SQL Server. This prevents a broken transaction log chain, which can cause the restore operation to fail.

Backing up the transaction log for SQL Server Express

For SQL Server Express Edition, the recovery model of the database is set to "SIMPLE" by default, and the transaction log backup is not applied when the recovery model of database is "SIMPLE." In order to have the transaction log backed up, the recovery model of the database must be reset to "FULL" or "Bulk-logged."
Restoring SQL Server Data

NetWorker Module database restore process

A restore uses the following process:

1. The NetWorker Module for Microsoft SQL Server restores the most recent full backup, and then restores the most recent differential (level 1) backup (if any).

 If a full database backup is removed from the NetWorker server, and an incremental backup is attempted, the restore fails. The NetWorker Module for Microsoft SQL Server software checks the SQL Server instance to determine if a full database backup has been performed, but does not verify that a full backup still exists on the NetWorker server.

2. The NetWorker Module for Microsoft SQL Server restores all transaction log backups that ran after the most recent differential backup (or that ran after the last full backup, if there was no differential backup). To correctly restore uncommitted transactions, the SQL Server NORECOVERY mode is specified for all intermediate transaction logs.

 The restore of the final transaction log specifies the restore mode if a mode of STANDBY or NORECOVERY was selected. The default selection is Normal.

 For example, if you selected a restore mode of NORECOVERY, that specification appears in the output for a database restore as follows:

 C:> nsrsqlrc -s NetWorker_server_name my_database
 nsrsqlrc: Restoring database my_database...
 nsrsqlrc: RESTORE database my_database FROM virtual_device='BSMSQL' WITH norecovery, stats
 nsrsqlrc: RESTORE database my_database from virtual_device='BSMSQL' WITH norecovery (differential)
 nsrsqlrc: RESTORE transaction my_database FROM virtual_device='BSMSQL' WITH norecovery
 nsrsqlrc: RESTORE transaction my_database FROM virtual_device='BSMSQL' WITH norecovery
 Received 1.0 MB 4 files from NSR server.

This module imposes the following restrictions on database file relocation:

- Only database backups can be relocated. Individual file and filegroup backups cannot be relocated without relocating the database that contains those files.
- If the configuration of a database has changed since the most recent, level full database back up was created, you cannot relocate the database. Configuration changes include the deletion or addition of files, filegroups, or transaction log files.
- A system database might not be the destination database of a relocation.
- The relocation fails if the destination does not have sufficient space to create a new database.
Performing a restore with NetWorker User for SQL Server

To recover SQL Server data from a backup, perform the following tasks:

◆ “Task 1: Set up the restore” on page 55
◆ “Task 2: Specify the browse time (optional)” on page 73
◆ “Task 3: View the required volumes (optional)” on page 74
◆ “Task 4: Set the restore properties (optional)” on page 75
◆ “Task 5: Start the restore” on page 87

Note: The SQL Server databases must be restored in the correct order.

The amount of time that it takes to restore a database depends on the following variables:

◆ The amount of data
◆ Network traffic
◆ Server load
◆ Backup volume availability
◆ Tape positioning

If the backup volume with the databases is loaded at a storage node (backup device) local to the NetWorker server, the restore proceeds. If the restore does not begin, it is possible that either the wrong volume or no volume is mounted in the backup device.

When restoring an incompatible database by using the name of an existing database, or when restoring from a media failure where one or more database files were lost, the Overwrite the Existing Database attribute must be selected under the Files tab. Figure 16 on page 59 provides details.

After the restore is finished, the restore completion time appears in the Restore Status window.

Task 1: Set up the restore

To set up the restore:

1. Start the NetWorker User for SQL Server program.

 If multiple SQL Servers are active on the computer, the Select SQL Instance dialog box opens before the main window, as shown in Figure 7 on page 31.

2. Select the SQL Server host that the module should use to perform the restore operation, then click OK.

3. To select a NetWorker server other than the default server:

 a. Click the Select NetWorker Server button on the toolbar. The Change Server dialog box opens.

 b. Select a NetWorker server from the list, then click OK.
4. In the main window of the NetWorker User for SQL Server interface, click the **Restore** button on the toolbar.

 The **Restore Operation** dialog box opens as in **Figure 12 on page 56**.

 ![Figure 12 Restore Operation dialog box](image)

 Note: You can also select **Restore** from the **Operation** menu, and then select Normal, Copy, Verify Only, Partial, or Piecemeal (if running SQL Server Enterprise Edition).

Configuring a normal restore

To configure a normal restore:

1. Select the **Normal** restore type from the **Restore Operation** dialog box and click **Continue**.

 The **Restore** window lists the databases that can be restored, as in **Figure 13 on page 56**.

 ![Figure 13 Normal Restore window](image)

2. Select one or more databases to restore.

3. Right-click each marked database and select **Properties** to configure additional settings.
The **Properties** dialog box opens, as in [Figure 14 on page 57](#).

![Figure 14 Properties dialog box, General tab](image)

Options and actions that are available are dependent upon the version of SQL Server that is to be restored and the type of restore selected.

4. Specify the following on the **General** tab:
 - **Back up the active portion of the transaction log before restoring the database**

 This option backs up the active portion of the transaction log before performing the restore. When selected, the module attempts a transaction log backup by using the NO_TRUNCATE SQL keyword for SQL Server 2000.

 For SQL Server 2005 and 2008 databases, this option is selected by default for a Normal restore, and the module attempts the transaction log backup by using the NO_TRUNCATE and NORECOVERY SQL keywords. The restore operation proceeds regardless of whether the transaction log backup succeeds or fails.

 This option should not be selected if performing a rollback restore with a database in Simple restore mode. There is no log backup in Simple mode. If the option to back up the log is selected, a full backup of the log is performed on a database that is set to be recovered.

Note: The most common reason for restoring databases is to recover from operator errors, which are recorded in the transaction log. If you recover the database without applying the transaction log you lose the information since the last backup. If you apply the entire transaction log you re-corrupt the database. Point-in-time recovery data can be recovered to the time of the error minus approximately one second. This assumes that the database is functional enough to complete the final transaction log backup. If the Specify a Restore Time box under the Restore Time tab is checked, the backup proceeds, but the latest transactions captured in the active transaction log backup are not restored.
Perform the restore using this recovery mode

Normal mode instructs SQL Server to leave the database in operational state after the restore. This is the default mode.

No Recovery mode activates the SQL Server NORECOVERY database restore option for the last stage restored. This mode places the database in an unloadable state after the restore. However, the database can still process additional transaction log restore operations.

Standby mode specifies an undo file for SQL Server to use when rolling back the transactions. By default, this attribute displays a default filename and path:

```
%DriveLetter:\default_path\default_dbName undo.ldf
```

where:

- `default_path` is the default SQL Server backup path obtained from the SQL Server registry.
- `default_dbName` is the name of the database backup selected for the restore.

To specify another name and path for this file:

a. Enter a valid name and path, or click the ellipses button.

The Specify the Standby Undo File dialog box opens, as in Figure 15 on page 58.

![Figure 15 Standby Undo File dialog box](image)

d. In the Specify the Standby Undo File dialog box, specify the following attributes:

Enter a path in the File Location text box, or browse the file system tree and highlight a file.

Enter the filename in the File Name text box, or browse the file system tree and highlight an existing file.

Perform checksum before reading from media

This option (in the Properties dialog box) performs a checksum operation before a restore to ensure that it matches the backup.

The NetWorker Module for Microsoft SQL Server verifies the checksum by calculating a local result and comparing it with the stored value. If the values do not match, you can choose to continue the restore operation by selecting the Continue on checksum error option.
Restoring SQL Server Data

Note: The **Checksum** and **Continue with error** options are available starting with SQL Server 2005 instances.

5. Select the **Files** tab, as in Figure 16 on page 59.

![Figure 16 Properties dialog box, Files tab](image)

Configure the following settings:

- **Database to restore** displays the database selected for the restore. This attribute cannot be modified.

- **Name for restored database** specifies the name for the restored database. For a normal restore, this text box displays the name of the database selected for backup and cannot be modified.

- **Overwrite the existing database** instructs SQL Server to create the specified database and its related files, even if another database already exists with the same name. In such a case, the existing database is deleted.

 Note: This attribute includes the WITH REPLACE SQL keyword in the restore sequence. The WITH REPLACE keyword restores files over existing files of the same name and location. Microsoft SQL Server Books Online provides more information.

- **Mark the filegroups to restore** defines the files and filegroups to restore. If performing a normal or copy restore, the filegroups of the database selected cannot be changed.

 Note: The set of filegroups marked in this attribute is copied into the list of the **Modify the destination for the files in** attribute.
Restoring SQL Server Data

- Modify the destination for the files in displays a set of views for the database files to be restored, and enables filtering of files that are visible in the File and destination table. Table 14 on page 60 identifies the supported views:

<table>
<thead>
<tr>
<th>This view</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>All files</td>
<td>All of the files for the database, including transaction log files.</td>
</tr>
<tr>
<td>All log files</td>
<td>Only the transaction log files.</td>
</tr>
<tr>
<td>All data files</td>
<td>Only data files.</td>
</tr>
<tr>
<td>Filegroup name</td>
<td>Only data files for a specific filegroup.</td>
</tr>
<tr>
<td>Drive letter</td>
<td>All files located on a given drive at the time the backup occurred, even if those files have since been relocated to a different drive.</td>
</tr>
</tbody>
</table>

- File and destination table lists the SQL Server logical filenames and locations. The files listed in this table are associated to the marked database to be restored. When performing a normal restore, this table displays the current name and destination based on the SQL Server physical filename and logical location for the restored file.

 Note: Filestream data is displayed as a folder with no subordinate objects.

To modify the destination, perform one of the following:
- Double-click a file in the list to display the Specify the file destination dialog box.
- Click a file in the list, and then click Destination to display the Specify the file destination dialog box, as shown in Figure 17 on page 60.

![Figure 17 Specify the File Destination dialog box](image)
Configure the attributes listed in Table 15 on page 61.

Table 15 Configurable attributes

<table>
<thead>
<tr>
<th>This view</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source file name</td>
<td>The file currently selected in the File and Destination lists. This text cannot be modified. When multiple files are selected, this text box is empty.</td>
</tr>
<tr>
<td>Source location</td>
<td>The location and the file selected in the File and destination list. This information cannot be modified. When multiple files are selected, the location of the first selected file in the list is displayed.</td>
</tr>
<tr>
<td>Destination location</td>
<td>The file system location for the restored file. When multiple files are selected, the default SQL data path is opened, but not selected. Enter a pathname, or browse the file system tree and highlight a directory or file to change the location.</td>
</tr>
<tr>
<td>Destination file name</td>
<td>The name of the file currently selected in the File and Destination table. When multiple files are selected, the attribute is empty. Enter a new name or browse the file system tree and highlight a file to change the name.</td>
</tr>
</tbody>
</table>

6. Click **OK** to return to the **Files** tab.

7. Click the **Restore Time** tab to configure a restore schedule, as in Figure 18 on page 61.

![Figure 18 Properties dialog box, Restore Time tab](image)

This tab enables you to select a backup version and modify the restore date and time. The default selection for the restore is listed in the **Backup Version** table. When a point-in-time restore is performed, the restore procedure reinstates only transactions from the backup version that occurred before the specified restore date and time.

You can change the backup version or transaction time.
8. To perform a point-in-time restore, specify the following in the Restore Time tab:

- Select the Specify a Restore Time checkbox to schedule the restore.

 If the Backup the active portion of the transaction log before restoring the database checkbox on the General tab is selected, and you choose this option but do not specify the point-in-time in the transaction log, the latest transactions captured in the active transaction log backup are not restored. The latest transactions captured in the active transaction log backup will be restored to the specified point-in-time only if it was specified in the transaction log.

- Specify a Time to Perform a Point-in-time Restore

 The restore time indicates what data from the marked backup version is reinstated during the restore, and when to stop restoring transactions. This text box can be modified by clicking the Point-in-Time button.

- Point-in-time button

 When the incremental backup, or the latest backup (regardless of whether it is full, level incremental or level differential) is marked in the Backup Versions table, the Point-in-time button is enabled for setting the time for a point-in-time backup. “Set point-in-time restore properties” on page 86 provides more details. If a full or differential backup is marked but is not the latest backup, this button displays an error message.

- Backup Versions table

 Select and mark the backup version to use for the restore. The Specify a Time text box displays the date and time for the backup that is currently marked. Only one backup version can be selected and marked.

 To select a backup version, double-click a backup or select a backup and click the Mark button.

- Using a Named Log Mark

 Perform the restore by using a named log mark. This attribute is only enabled when log marks exist for the selected database backup. When this attribute is selected, the Restore to the End of the Log Mark and the Restore to the Beginning of the Log Mark buttons are enabled.

 Specify which type of named log mark restore to perform by selecting one of the following:

 - To restore the backup and stop immediately after the named log mark, select Restore to the End of the Log Mark. This type of restore includes the named transaction in the restore.
 - To restore the backup and stop immediately before the named log mark, select Restore to the Beginning of the Log Mark. This type of restore excludes the named transaction.

- Log Mark table — Use this attribute to specify a log mark to use for the restore.

 Double-click a log mark or select a log mark in the list and click the Mark button.

9. When finished, click OK.

 There are additional restore options that you can define.

10. Select Restore Options from the Options menu.
The **Restore Options** dialog box is displayed, as in **Figure 19 on page 63**.

![Figure 19](image)

Figure 19
Restore Options dialog box, General tab

11. From the **General** tab, configure the following attributes:

- **Automatically overwrite any database marked for restore**
 Select this attribute to overwrite the marked databases. This restores the database by using the WITH_OVERWRITE SQL keyword.

- **Detect available tape sessions prior to restoring a striped backup**
 Select this attribute to restore SQL data that was originally backed up as a striped backup. If this attribute is selected, the module determines the number of tape sessions needed to restore a striped backup.

 Note: This attribute is selected by default. It is controlled by the Windows registry entry NSR_DETECT_TAPES, which can be modified. Regardless of whether this attribute is selected, it retains its setting from one session to the next.

If you do not have adequate permissions, this checkbox is disabled. “**Security requirements**” on page 12 provides information about how to determine the permissions necessary for Windows 2000 servers. **Appendix B, “Striped Backup and Recovery,”** provides information about how to determine the permissions necessary for Windows 2003 servers.

- **Select a debug level**
 Selecting a debug level issues the command line `–D n` option, where `n` is an integer value between 1 and 9. When the debug level is selected, the debug information appears in the Backup or Restore status window, and also in the log files. This information can be useful in diagnosing problems.

 If you specify debug level logging, watch the size of the module log files. The files are located at:

 `installpath\nsr\applogs`

 where `installpath` is typically `C:\Program Files\Legato` and can grow very large. Log files with debug output can be deleted (or archived).
• Disable log mark display
 This attribute disables the potentially time-consuming retrieval of log mark information. Select in situations where log marks will not be used for most restore operations, particularly if the client file index is large. This setting persists across multiple invocations of the user interface. When log mark display is disabled, the log mark in the backup will not be displayed in the Restore Time tab.

 When this option is selected, the log mark information is not displayed in the Restore Time tab of the Restore Properties dialog box. When it is not selected, the information is displayed.

• Transaction log backup before restore
 With SQL Server 2005 and 2008, transaction log backups are required prior to restoring databases. This ensures that the database can be restored to the most recent point-in-time possible. This option is selected by default for SQL Server 2005 and 2008.

 When this option is not selected, the Back Up the Active Portion of the Transaction Log Before Restoring the Database option (selected by default for SQL Server 2005 and 2008) is enabled in the Properties dialog. Choosing not to back up the active portion of the transaction log and not overwriting the existing database displays the following shown in Figure 20 on page 64.

![Figure 20 Review Options message](image)

You can choose not to back up the transaction log by selecting No for Restore with overwrite in the precautionary message box. This will replace the existing database by using the T-SQL option WITHREPLACE. This will improve performance in cases where the database is too damaged to perform the transaction log backup or it is known that the transaction log is not of interest.

• Alternate decryption pass phrase
 Specifies a pass phrase for AES encryption other than the default or current phrase used by the NetWorker Server. If data was backed up using AES encryption and an alternate pass phrase, (and the original pass phrase is no longer current), that phrase must be specified to decrypt data during the restore. If multiple pass phrases are required, they must be specified at the command line. The EMC NetWorker Administration Guide provides complete information about AES encryption, and setting the pass phrase.

 Note: AES encryption is not supported for PowerSnap operations.
12. (Optional) If the PowerSnap Module is installed, select the **Snapshot** tab to configure snapshot restore options. Choose from either **File Level** or **Volume Level** rollback operations.

Other file system objects on the affected volumes will be reverted to their state at the time of the original snapshot (out of date or nonexistent). Other databases that reside partially, or in total, on the affected volumes are not synchronized at the time of the original snapshot and will be out of date and possibly corrupt after a rollback. If a rollback fails, the database and snapshot backup are lost.

The PowerSnap documentation provides information on how to specify file system objects that should be ignored during volume rollback safety checks. These safety checks can be overridden by selecting the **Force rollback** checkbox.

An additional dialog box prompts users to continue or cancel if other database files are detected on the volumes, as shown in **Figure 21 on page 65**.

![Figure 21 Restore Options dialog box, Restore tab](image)

- **File Level Restore Type**

 If you select **File Level restore**, then a file level restore procedure runs from the source selected in the **Restore Type** windows.

- **Volume Level Rollback**

 If you select the **Volume Level Rollback** button, then file-level restore is not performed.

- **Restore Type and Restore Type Order**

 Use the right and left arrows to select one or both of the snapshot restore methods, and use the up and down arrows to establish the order of procedure:

 - **FLIR and FLIR to mirror**

 Restores a Symmetrix backup. Data that was backed up by using an image backup (SymmConnect) is recovered to a standard volume. FLIR recovers to a production volume and FLIR using a mirror recovers to a SAN-based backup or virtual volume. Only one of these options can be selected for a single restore operation.
– **Persistent Snapshot**
 If only the persistent snapshot option is selected, a snapshot is restored from the SQL Server storage subsystem. If a recoverable snapshot is not found on the SQL Server storage subsystem, no recovery is performed.

– **NetWorker Server**
 If only the NetWorker Server option is selected, a snapshot is restored from secondary storage on the NetWorker server or storage node. If a recoverable snapshot is *not* found on secondary storage, no recovery is performed.

– **Persistent Snapshot, NetWorker Server**
 If both options are selected, with Persistent Snapshot first, a snapshot is restored from the SQL Server storage subsystem. If a recoverable snapshot does *not* exist on the SQL Server storage subsystem, a secondary storage search is performed on the NetWorker server or storage node.

– **NetWorker Server, Persistent Snapshot**
 If both options are selected, with NetWorker Server first, a snapshot is restored from secondary storage on the NetWorker server or storage node. If a recoverable snapshot is *not* found on the NetWorker Server or storage node, the SQL Server storage subsystem is searched for a recoverable snapshot.

– **Specify a Data Mover**
 This attribute identifies the hostname of the computer that restores the snapshot. By default, this value is set to the SQL Server host.

 • The data mover information is ignored for volume-level rollback. For file level restore, enter the data mover in the Specify a Data Mover text box.

 Note: The data mover for the target SQL Server specified for the snapshot backup must be the same data mover specified for snapshot recovery. The EMC NetWorker PowerSnap Module guides provide more information about configuring a data mover.

13. Click **OK**.

14. Click the play button in the toolbar of the restore dialog box to start the restore. Monitor the status of the restore in the **Restore Status** window.
Configuring a copy restore

To configure a copy restore:

1. Select the **Copy** restore type from the **Restore Operation** dialog box and click **Continue**.

The **Select the SQL Server** dialog box is displayed, as in Figure 22 on page 67.

![Select the SQL Server dialog box](image)

2. Specify the NetWorker client from which SQL Server backups are imported for restore to the local SQL Server by selecting one of the following attributes:

 - **The current SQL Server Instance**
 Displays the name of the current NetWorker client host. Select this attribute to use a database backup from the SQL Server currently connected to the NetWorker module.

 - **A [different] NetWorker SQL Server client**
 By default, this attribute is disabled and the text box displays the name of a NetWorker client host. Select this attribute to select a different SQL Server host from which to obtain the existing database backup.

 Note: In order to select other client machines as the source of a copy restore, the destination machine and an appropriate user account or group must be specified in the list of NetWorker administrators on the NetWorker server (or remote access). The release notes provide information about setting up a mid-level user account that does not grant full administrator privileges.

 A new dialog box is displayed if the following applies to the selected NetWorker client:
 - A backup exists.
 - A named instance directory in the index.

 This dialog box enables the selection of the source from default and named instances.

3. Select either the SQL Server default instance or an SQL Server named instance, and click **Continue**. After choosing a SQL instance, all database backups are listed.

 Note: A CopyOf prefix is prepended to database (and database file) names only if a database by the same name already exists on the target system. This may not be the case for copy restore between systems or between instances of SQL Server (or if the original database has been removed). In these cases the default database and filenames will be the same as the original names.
If backups for the SQL default or other named instance were not performed, or are no longer available, the message shown in Figure 23 on page 68 is displayed.

Figure 23 NetWorker User for SQL Server message

4. After you select a SQL instance, the Restore window, shown in Figure 24, lists the databases that can be restored.

Figure 24 Restore (Copy) window

5. Select one database to restore.

 Note: If the partial, piecemeal, or copy restore type is selected, only one database object can be marked. Files and filegroups of the selected database are not visible in the browse window since they require a database backup. The files and filegroups can be viewed and configured in the File tab of the Properties dialog box.

6. Right-click the marked database and select Properties.

 Note: If you select partial, piecemeal, or copy restore type, you must specify the restore properties before starting the restore. Otherwise, the restore fails to start.

The Properties dialog box appears and the General tab is displayed, as in Figure 25 on page 68.

Figure 25 Sample Properties dialog box
7. In the Properties dialog box, click the Files tab. When restoring a copy of a database, you can overwrite an existing database or create a new one.

- To create a new database, enter a name in the Name for restored database text box. The default is CopyOfSelectedDB.
- If you want to overwrite an existing database, select a name from the Name for restored database text box and select Overwrite the existing database.

Note: Check the generated filenames. If you change the name of the database from CopyOfAcme Sales back to Acme Sales, by using overwrite, then you may remove the CopyOf prefix from the associated filenames as well. Default names are generated when the dialog box is first displayed. Any database name edits are not propagated to the database filenames. These changes must be made manually.

8. In the Properties dialog box, click the Restore Time tab.

9. When properties are configured, click OK. These settings are maintained until the restore is started.

10. Click the play button in the toolbar of the Restore dialog box to start the restore.

Note: You can monitor the status of the restore in the Restore Status window.

To perform a copy restore of a snapshot backup, these requirements must be met:
- The NetWorker servers file on the data mover node (proxy client) must contain an entry for the destination client.
- The NetWorker Administrators Users group must include system@destination_client_hostname (using a fully qualified domain name) in the Users attribute.
- The snapshot backup must have been rolled over to tape (or other file device). Copy restore does not work with volume rollback.

Performing a named instance recovery

For a recovery, a default instance and a named instance A and B are available on a client computer. Once a backup is performed by using NetWorker User for SQL Server, a copy restore is available for all three instances.

If instance A is uninstalled for some reason, a copy restore from instance A is still available, because the instance is still listed in the client file index for the most recently named instance directory. Should a more recent backup be performed for any of the instances, after instance A is uninstalled, a recovery will not be possible. A new named instance directory is created with instance A excluded.
The remedy for this is to reinstall the removed named instance and run another backup. This restores the directory information for instance A and complete functionality, as in Figure 26 on page 70.

![Figure 26 Restore window](image)

Perform the following to view and select restore items:

1. To view a list of data items available for restoring, expand any item in the left pane of the **Restore** window.

 The descendants of the item are displayed in the right pane.

2. In the **Restore** window, select the item to restore by clicking the checkbox.

 Note: If the partial, piecemeal, or copy restore type is selected, only one database object can be marked. Files and filegroups of the selected database are not visible in the browse window, and require a database backup. The files and filegroups are available in the **Properties** dialog box.

3. Once the restore is set up, start the operation. “Task 5: Start the restore” on page 87 provides more information.

Configuring a verify-only restore

The verify-only option, shown in Figure 12, “Restore Operation dialog box,” on page 56, enables you to verify that data for a database can be restored.

Note: Verify-only restore will not work with PowerSnap PiT backups. For verify-only restore to work, the backup must have been rolled over to tape or some other device.
To configure a verify only restore:

1. Select the **Verify Only** restore type from the **Restore Operation** dialog box and click **Continue**.

The **Restore** window lists the databases that can be restored, as in Figure 27.

![Verify Only Restore window](image)

2. Select one or more databases from the list.
3. (Optional) Right-click the parent server to open the **Restore Options** dialog box.
4. Click **OK**.
5. Click the play button in the toolbar of the **Restore** dialog box to start the restore.

You can monitor the status of the restore in the **Restore Status** window.

Configuring a partial or piecemeal restore

Partial restore is enabled for SQL Server 2000 releases. If you are restoring SQL Server 2005 or 2008 databases (Enterprise Edition only), the option becomes piecemeal restore. “Restore types” on page 21 provides detailed descriptions.

To configure a partial or piecemeal restore:

1. Select the **Piecemeal** restore type from the **Restore Operation** dialog box and click **Continue**.

The Restore window is displayed, as in Figure 28 on page 71.

![Piecemeal Restore window](image)
2. Select a database from the list.

 Note: Only one database object can be marked for piecemeal restore. Files and filegroups of the selected database are not visible in the browse window. These operations require a database backup. The files and filegroups can be viewed and configured in the **Files** tab of the **Properties** dialog box.

3. (Optional) Right-click the parent server to open the **Restore Options** dialog box.
4. Click **OK**.
5. Right-click the database and select **Properties**.

 Note: In partial and piecemeal restore operations, you must specify the restore properties before starting the restore. Otherwise, the restore fails to start.

The **Properties** dialog box is displayed.

In the **General** tab, partial and piecemeal restores overwrite a database when restoring to the same location. To overwrite an existing database, select a name from the **Name for restored database** text box and select **Overwrite the existing database**.

6. In the **Properties** dialog box, click the **Restore Time** tab.
7. When finished configuring properties, click **OK**.

 For piecemeal restore, certain settings in the **Properties** dialog box are reset if you redisplay the **Properties** dialog box before starting the restore process. The selections that will be reset are:
 - Marked files and filegroups of the selected database.
 - **Name for restored database** option (on the **Files** tab).
 - **Backup the active portion of the transaction log before restoring the database** checkbox (on the **General** tab).

 If you do return to the **Properties** dialog box, the message shown in **Figure 29 on page 72**, is displayed.

 ![Figure 29 Restore Options message](image)

 Figure 29

8. Click the **Play** button in the toolbar of the **Restore** dialog box to start the restore.

 Note: Piecemeal restore is iterative. You can continue to restore additional filegroups in subsequent operations. Previously restored filegroups will not be available for selection unless you specify **New Piecemeal**.
Task 2: Specify the browse time (optional)

In the NetWorker User for SQL Server Restore window, you can browse the online index and mark a database backup version to restore.

The browse time controls which backup data is viewable in the Restore window. You can modify the browse time to display backup versions for a different restore time by selecting Change Browse Time from the View menu. However, the browse time cannot change to a point:

- Earlier than the first SQL Server module backup.
- Later than the most recent backup.

An invalid time entry results in an error message.

To specify a browse time:

1. From the View menu, select Change Browse Time.

 The Change Browse Time dialog box is displayed, as in Figure 30 on page 73.

 ![Change Browse Time dialog box](image)

 Figure 30 Change Browse Time dialog box

2. Select one of the following attributes to change the browse time:

 - **Specify a browse time**

 By default, this attribute displays the current browse time. Select this attribute to enable the Browse Time button:
a. Click the **Browse Time** button to open the **Specify Browse Time** dialog box, as shown in Figure 31 on page 74.

![Specify Browse Time dialog box](image)

Figure 31 Specify Browse Time dialog box

b. Select a date and time from the **Date** and **Time** lists.

c. Click **OK**.

The dialog box closes and the **Specify a browse time** attribute in the **Change Browse Time** dialog box appears with the new date and time. The backup version list is also updated.

- **Select a backup version to change browse time**

By default, this attribute marks the current browse time in the backup version list. Select this attribute to enable the backup version list and **Mark** button. The backup version list displays the known backup version times, which correspond to save times of the root browse directory. The root browse directory is created anytime a SQL Server backup is performed.

To select a new browse time, do one of the following:

- Double-click a backup time in the list, and then click **OK**.
- Select a backup time in the list, click **Mark**, and then click **OK**.

The **Specify a Browse Time** attribute is updated to reflect the new setting.

Note: When you change the browse time, previous selections in the Restore window are discarded. Any file, filegroup, or database property settings are lost.

Task 3: View the required volumes (optional)

After you select the databases to restore, you can check which backup volumes contain the databases you need by doing one of the following:

- Selecting **Required Volumes** from the **View** menu.
- Selecting the **Required Volumes** button from the toolbar.

Checking the required volumes helps to ensure that the necessary backup volumes are mounted in the NetWorker server’s storage device.

Note: Required volumes information is not available for snapshots.
If a required backup volume is not mounted, do one of the following:

- Contact the NetWorker administrator and request that the volume be mounted.
- Wait for the NetWorker software to prompt the administrator to mount the volume.

Task 4: Set the restore properties (optional)

To set the restore properties for a select file, filegroup, or database:

1. Right-click the database item, and select **Properties**.
2. Complete the **Properties** dialog box.
3. Click **OK**.

Note: Restore properties are **not** available for the verify-only restore type.

See these sections for additional information:

- “Set database restore properties” on page 75 provides information about setting restore properties for a database.
- “Select filegroups to restore” on page 79 provides information about setting restore properties for a file or filegroup.

All of the properties are context-sensitive, based on the version of SQL Server that is running and the restore type that was chosen.

Preferences specified for these properties are used for the current restore operation. When a preference is **not** set, the default is used. After the restore is complete, and the Restore window is closed, the property settings revert back to the NetWorker User for SQL Server defaults.

Note: If you select partial, piecemeal, or copy restore type, you must specify the restore properties before starting the restore. Otherwise, the restore fails to start.

Set database restore properties

The information in this section applies to normal, copy, and piecemeal restore types.

To set database restore properties:

1. In the Restore window, select a database.
2. Right-click the database and select **Properties**.
The **Properties** dialog box is displayed, as shown in Figure 32 on page 76.

![Properties dialog box](image)

Figure 32 Properties dialog box

3. On the **General** tab, indicate whether to back up the active portion of the transaction.

 When selected, a transaction log backup starts by using the NO_TRUNCATE SQL keyword (for SQL Server 2000) and also the NORECOVERY keyword (for SQL Server 2005 and 2008). The restore operation proceeds regardless of whether the transaction log backup succeeds or fails.

 Specify a point-in-time restore to any time within the transaction log backup. This option applies to all SQL Server restores, and addresses database failure if that occurs after the last scheduled incremental backup.

 By backing up the active portion the active portion of the log prior to the restore, users can specify a restore for *time of failure*.

4. To specify a point-in-time restore, select the **Restore Time** tab, and make entries as appropriate.

 Point-in-time restore can use either a full, level incremental, or level deferential backup, as long as the selected backup is an incremental and/or the latest backup.

5. Specify a recovery mode to use for the restore:
 - **Normal** mode instructs SQL Server to leave the database in operational state after the restore. This is the default mode.
 - **No Recovery** mode activates the SQL Server NORECOVERY database restore option for the last stage restored. This mode places the database in an unloadable state after the restore. However, the database can still process additional transaction log restore operations.
Performing a restore with NetWorker User for SQL Server

Restoring SQL Server Data

Standby mode enables the **Standby Undo File Name** which specifies an undo file for SQL Server to use when rolling back the transactions. (See “Specifying an undo filename” on page 77 for instructions.) By default, this attribute displays a default filename and path as follows:

```markdown
%DriveLetter:\<default_path>\<default_dbName>undo.ldf
```

where:

- `default_path` is the default SQL Server backup path obtained from the SQL Server registry.
- `default_dbName` is the name of the database backup selected for the restore.

6. Select **Checksum** and **Continue with error**.

If checksums are not calculated for the backup specifying them for the restore causes the restore operation to fail.

Specifying an undo filename

To specify the undo filename, do one of the following:

1. Enter a valid name and path in the text box.

 Click the ellipses button to display a dialog box similar to that shown in Figure 33 on page 77.

2. Select a file from the file system tree.

 The file location and name are listed in the text boxes.

3. Select a file from the file system tree. The file location and name appear in the text boxes.

4. Specify these attributes:

 - **File Location**

 Displays the path for the standby undo file. Enter a path in the **File Location** text box, or browse the file system tree and highlight a file. When a file in the browse tree is highlighted, the file’s path is listed in the **File Location** text box.

 - **File Name**

 Specifies the standby undo filename. Enter the filename in the **File Name** text box, or browse the file system tree and highlight an existing file. When a file is highlighted, the filename is listed in the **File Name** text box.

5. Click **OK**.
View file or filegroup restore properties

The file and filegroup restore properties in the Properties dialog box are provided for informational purposes only. SQL Server dictates the settings for these properties. They cannot be configured.

The properties in these dialog boxes apply to one selected or a filegroup for a normal restore type operation.

Note: These properties are not available for partial, copy, or verify-only restore type operations.

To view the restore properties for a file or filegroup:

1. From either pane of the Restore window, right-click a selected file or filegroup.
2. Select Properties.

The Properties dialog box is displayed. Properties differ depending on the version of SQL Server that is run.

Figure 34 on page 78 displays the properties for a filegroup.

![Filegroup Restore Properties dialog box](image)

Figure 34 Filegroup Restore Properties dialog box

The following attributes appear in the Properties dialog box:

- **Backup the active portion of the transaction log file**

 When selected the active portion of the transaction log is backed up before performing a restore. That way, the log can be applied to the filegroup or file to make it consistent with the rest of the database. The SQL Server requires the transaction log when restoring damaged or lost data files.

 NetWorker User for SQL Server attempts a transaction log backup as follows:

 - For versions prior to SQL Server 2005, the backup uses the NO_TRUNCATE SQL keyword. The restore proceeds regardless of whether the backup was successful.
 - For SQL Server 2005 and 2008 non-Enterprise Editions or Primary filegroup, the backup uses the NO_TRUNCATE and NO_RECOVERY SQL keywords.
Performing a restore with NetWorker User for SQL Server

For files belonging to secondary filegroup and secondary filegroups restore for SQL Server 2005 and 2008 Enterprise Edition, the restore workflow requires you to first restore the filegroup and then take a backup of the active portion of the transaction log. The transaction log backup must be applied to the file or filegroup restore to ensure that the file or filegroup is consistent with the rest of the database.

If a file or filegroup is restored with the NetWorker User for SQL Server program, these transaction log backups occur automatically. It is recommended that you use the NetWorker User for SQL Server for this type of restore.

- **Overwrite the existing filegroup/file with the restored file**
 Forces SQL Server to ignore errors due to nonexistent files which result from media failure. If there is a media failure, then the files cease to exist. The NetWorker User for SQL Server specifies the WITH REPLACE SQL keyword in the restore sequence. The file or filegroup is restored to the exact location (drive and pathname) as the location on the source host from which the data was backed up.

- **Backup versions** table
 Lists the date and time of all the backups available for the restore operation.

Select filegroups to restore

Use the Properties dialog box to select a filegroup to restore. Tabs appear differently depending on the type of restore:

- For normal and copy restore, the tab is labeled **Files**.
- For a partial restore, the tab is labeled **General** and is available only for SQL Server 2000.
- For a piecemeal restore, the tab is labeled **Files** and is supported only for SQL Server 2005 and 2008.

Note: If the marked database item selected was created by a release of the NetWorker Module for Microsoft SQL Server earlier than 4.0, or the most recent backup is a transaction log backup for a database that was corrupt, a **Files** tab selection may first open the **Read File Configuration** dialog box. “Specify Read File Configuration properties” on page 83 provides further details.
To select filegroups to restore:

1. Select the **Files** tab, as shown in **Figure 35 on page 80**.

![Figure 35 The Files tab of the Properties dialog box](image)

2. Specify attributes as follows:

 - **Database to restore**
 Displays the name of the database (on secondary storage) selected for the restore. This attribute is informational only and cannot be modified.

 - **Name for restored database**
 Specifies the name for the restored database:
 - If performing a normal restore, this text box displays the name of the selected database is disabled.
 - If performing a partial or copy restore, CopyOf or PartOf is appended to the source database name and all associated data files and log files.
 To specify a different name, enter a new name in the text box or select a name from the list. The name must comply with SQL Server naming conventions.

 Note: If you specify a different name, the data and log files retain the default name, as shown in the **File and Destination** table. For example, if copy restore is selected when restoring a database named `Project` to a database named `Test`, and the data and log filenames retain the values of `CopyOfProject_Data.MDF` or `CopyOfProject_Log.LDF`. The data and log filenames must be changed. “**Specify the restored file's destination and filename**” on page 82 provides information to change data and log filenames.
When the **Name for restored database** attribute is set to the name of an existing database, the **Overwrite the existing database** attribute is enabled when you click **Apply** or **OK**. These two attributes can then be used together. The name of the existing database is then used for the restored database when the two databases are incompatible.

- **Overwrite the existing database**
 Instructs the SQL Server to create the specified database and its related files, even if another database already exists with the same name. In such a case, the existing database is deleted.

 Note: This attribute causes the WITH REPLACE SQL keyword to be included in the restore sequence. The WITH REPLACE keyword restores files over existing files of the same name and location. The *Microsoft SQL Server Books Online* provides more information on the WITH REPLACE SQL keyword.

- **Mark the filegroups to restore**
 Select or clear the filegroups to restore when the following applies:
 - If performing a normal or copy restore this attribute displays the filegroups of the database selected.
 - If performing a partial or piecemeal restore, by default, this attribute displays the filegroups of the database marked for the restore.

 To select or deselect a filegroup:
 a. Highlight the filegroup in the list.
 b. Click the **Mark/Unmark** button.

 You can select multiple filegroups.

 In SQL Server 2000, the primary filegroup is always marked and cannot be unmarked. SQL Server requires that the primary filegroup be included in a partial restore.

 In SQL Server 2005 and 2008, the primary filegroup is always marked in the initial stage of a piecemeal restore, and cannot be unmarked. Note that the piecemeal restore is iterative. You can continue to restore additional filegroups in subsequent operations. Previously restored filegroups will not be available for selection unless you specify **New Piecemeal**.

 Note: The set of filegroups marked in this attribute is copied into the **Modify the Destination for the files in** attribute list.

- **Modify the destination for the files in**
 This list contains a set of different views for the database files to be restored, and enables filtering of files that are visible in the **File and Destination** table. The views listed in Table 14 on page 60 are supported.

- **File and Destination table**
 The table’s **File** column lists SQL Server logical filenames. The **Destination** column lists physical filename and locations. The files listed in this table are associated to the marked database to be restored.

 - If performing a normal restore, this table displays the current name and destination based on the SQL Server physical filename and logical location for the restored file.
If performing a partial or copy restore, this table displays a default name and destination based on the SQL Server physical filename and logical location for the restored file.

Note: The default location for the data files and log files is in the data path of the default SQL Server installation directory. If this directory is on the system drive, provide enough disk space for the database files, or specify another location that does.

You cannot edit the **File and Destination** table. You can, however, modify the destination location.

To modify the destination, do one of the following:

- Double-click a file to display the **Specify the file destination** dialog box, as shown in Figure 36 on page 82. Then follow the instructions in the next section.
- Click a file, and then click the **Destination** button to display the **Specify the file destination** dialog box. Then follow the instructions in the next section.

Specify the restored file’s destination and filename

Specify the destination locations for the restored files in the **Specify the File Destination** dialog box, as in Figure 36 on page 82.

![Figure 36 Specify the File Destination dialog box](image)

Specify attributes as follows:

- **Source file name** displays the file currently selected in the **File and Destination** lists. The **Source File Name** text box is informational only and cannot be modified. When multiple files are selected, this text box is empty.

- **Source location** displays the file system location and the file currently selected in the **File and Destination** lists. The **Source Location** text box is informational only and cannot be modified. When multiple files are selected, this text box contains the file system location of the first selected file in the **File and Destination** lists.

- **Destination location** displays the file system location for the restored file. When multiple files are selected, the default SQL data path is opened, but not selected.
To modify this attribute enter a pathname, or browse the file system tree and highlight a directory or file. When a directory is highlighted, that path appears in the Destination Location text box. If a file is highlighted, the directory for the highlighted file is displayed.

- **Destination file name**, by default, lists the name of the file currently selected in the File and Destination table. When multiple files are selected, the attribute is empty.

To modify this attribute, enter a new name in the Destination File Name text box or browse the file system tree and highlight a file. When a file is highlighted, the filename is displayed in the Destination File Name text box.

Note: Default filenames are generated when the dialog box is first displayed. Verify that the filenames are correct. This is particularly important after changes to the database name.

Specify Read File Configuration properties

Some of the data used to populate the attributes on the Files tab of the Properties dialog box is obtained from new file-configuration metadata objects created in the client file index.

To specify Read File Configuration properties:

1. Open the Properties dialog box for a marked database item that has no file-configuration metadata in the client file index. You may load this information from the save set media.

 The Read File Configuration dialog box appears, as in Figure 37 on page 83.

 ![Read File Configuration dialog box](image)

2. Specify attributes as follows:

 - **Read the file configuration from save set media**

 If you read from tape, a message appears. The save set media is read in the background. When this process finishes, the Properties dialog box appears, and the Filegroup and Destination table display valid data.

 To cancel the reading process, select the Cancel button. If you cancel from the Reading dialog box, the Properties dialog box appears, but the File and Destination table is empty.

 - **Skip reading the file configuration**

 If you select this attribute, the Properties dialog box appears, but the File and Destination table is empty.
Set Restore Time properties

The **Restore Time** properties support selection of a backup version and modification of the restore date and time. When a point-in-time restore is performed, the restore procedure reinstates transactions only from the backup version that occurred before the specified restore date and time.

To set restore time properties:

1. In the Properties dialog box, select the **Restore Time** tab, as in Figure 38 on page 84.

![Figure 38 The Restore Time tab in the Properties dialog box](image)

Note: If the back up the active portion of the transaction log checkbox on the General tab is selected, and you select the **Specify a Restore Time** attribute, not all of the transactions in the transaction log backup will be present in the restored database. Only data up to the point-in-time restored appear. You can specify a point-in-time restore between the last scheduled full, incremental, or differential backup and the current time. The transaction log will be backed up as the initial portion of the restore operation and, if the transaction log backup is successful, the log is also restored.

2. Select **Specify a Restore Time** to enable these restore time controls:
 - **Using a specific backup version**
 When this attribute is selected, the following are enabled.
 - **Specify a time to perform a point-in-time restore**
 Indicates what data from the marked backup version is reinstated during the restore, and the time to stop restoring transactions. This text box can be modified for a backups selected in the Backup Versions table if a backup is the latest or an incremental backup.
 - **Point-in-time button**
 If an incremental backup is selected in the Backup Versions table, that text box (Figure 38 on page 84) can be modified by clicking the Point-in-Time button. The Point-in-Time button is also enabled for any *latest* backup (full, incremental, or differential) for which the Backup the active portion of the transaction log before restoring the database checkbox is checked on the
General tab. For details, see “Set point-in-time restore properties” on page 86. If the backup that is marked is not the latest backup, this button displays an error message.

- **Backup versions table**
- Select and mark the backup version to use for the restore. The **Specify a Time** text box displays the date and time for the backup that is currently marked. Only one backup version can be selected and marked. The **Backup Versions** table contains the four columns identified in Table 16 on page 85.

Table 16 Backup Versions table columns

<table>
<thead>
<tr>
<th>This column</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>The size of the backup.</td>
</tr>
<tr>
<td>Type</td>
<td>The backup type, including “full” for level full backups, “incr” for level incremental backups, and “1” for level differential backups.</td>
</tr>
<tr>
<td>Method</td>
<td>The method, either Traditional Recover or Snapshot Recover, used to originally create the backup that is to be restored.</td>
</tr>
<tr>
<td>Backup Time</td>
<td>The date and time, in seconds, when the backup was created.</td>
</tr>
</tbody>
</table>

To select a backup version, do one of the following:
- Double-click any backup in the table.
- Click any backup in the table, then click the **Mark/Unmark** button. When a backup version is marked, a check mark appears next to the backup size. If another backup version is already marked, the newly selected backup version is marked and the other version becomes unmarked.

- **Using a named log mark**
 Perform the restore by using a named log mark. If log marks are not used, then display of this information can be disabled.

This attribute has these characteristics:
- Can use a maximum of 1024 log marks.
- Is enabled only when log marks exist for the selected database backup. When this attribute is selected, the **Restore to the End of the Log Mark** and the **Restore to the Beginning of the Log Mark** buttons are enabled.

Specify which type of named log mark restore to perform by selecting one of the following:

To restore the backup and stop it immediately after the named log mark, select **Restore to the End of the Log Mark**. This type of restore includes the named transaction in the restore.

To restore the backup and stop it immediately before the named log mark, select **Restore to the Beginning of the Log Mark**. This type of restore excludes the named transaction.
• Log Mark table
 Use this attribute to specify the log mark to use for the restore. Only one log
mark may be selected. Table 17 on page 86 shows the columns in the Log
Mark table.

Table 17 Log Mark table columns

<table>
<thead>
<tr>
<th>This column</th>
<th>Displays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log mark</td>
<td>The name of the transaction log mark.</td>
</tr>
<tr>
<td>Date</td>
<td>The date and time, in granularity of milliseconds, on which the named transaction log mark was created.</td>
</tr>
<tr>
<td>Description</td>
<td>The any information about the log mark that was entered when the transaction was performed.</td>
</tr>
</tbody>
</table>

To select a log mark do one of the following:
– Double-click any log mark in the table.
– Click any log mark in the list, then click the Mark button.
 A check mark appears next to the log mark name. Only one can be marked at one time.

Set point-in-time restore properties

Specify a date and time for the SQL point-in-time restore in the Point-in-Time Restore dialog box. Be sure that the date and time are within a timeframe spanned by the transaction log backup that was marked in the Backup Versions table. The create time of the transaction log backup defines the upper limit of the time frame. No date and time greater than this upper limit can be specified. If a transaction log backup has been specified as part of the restore, then the upper limit is the current time. The lower limit of the time frame is the create time of the most recent level incremental or level full backup created prior to the selected backup. No date and time less than or equal to this lower limit can be specified.

To set point-in-time restore properties:
1. On the Restore Time tab:
 a. Select the Specify a restore time checkbox.
 b. Click Using a specific backup version button.
 c. Select the Point-in-time button.
Performing a restore with NetWorker User for SQL Server

The **Point-in-time restore** dialog box is displayed, as in Figure 39 on page 87.

![Point-in-Time Restore dialog box](image)

Figure 39 Point-in-Time Restore dialog box

2. Specify the following attributes as needed:
 - For **Date**, specify the restore time date for the marked backup version. The syntax for this text box is *mm/dd/yyyy*.

 To modify the date, enter a date by using the appropriate syntax or click the arrow to display the Calendar. In the **Calendar**, click a date. Use the **Previous Month** and **Next Month** buttons to change from the current month.

 The restore time date must be within the range of transaction dates included in the selected backup version. If a transaction log backup has been specified as part of the restore operation then the upper limit is today’s date.

 - For **Time**, specify the restore time for the marked backup version. The syntax for this text box is *hh:mm:ss*.

 To modify the time, enter a time by using the appropriate syntax or use the scroll arrow buttons to change the time.

 The restore time must be within the range of transaction times included in the marked backup version. If a transaction log backup has been specified as part of the restore operation then the upper limit is the current time.

Task 5: Start the restore

To start a restore:

1. Click **Start** to begin the restore.
2. To cancel the restore, select **End Restore** from the **File** menu.

The amount of time to restore databases depends on:

- The amount of data
- Network traffic
- Server load
- Backup volume availability
- Tape positioning

While the restore is in progress, the Restore Status window displays messages for each restored database to monitor the progress of the restore.
If the backup volume containing the databases is loaded at a storage node (backup device) local to the NetWorker server, the restore proceeds. If the restore does not begin, it is possible that either the wrong volume or no volume is mounted in the backup device.

When restoring an incompatible database by using the name of an existing database, or when restoring from a media failure where one or more database files were lost, the Overwrite the Existing Database attribute must be selected under the Files tab.

To display the Files tab, right-click the database item and select Properties.

After the restore is finished, the restore completion time is listed in the Restore Status window.
This chapter explains the NetWorker Module for Microsoft SQL Server backup and restore procedure for a Microsoft Cluster Server (MSCS) environment, and how this procedure relates to MSCS cluster support provided for NetWorker file system clients.

This chapter includes the following sections:

- The NetWorker client in a Microsoft Cluster ... 90
- The NetWorker Module in a Microsoft Cluster .. 91
- How to run a scheduled backup ... 93
- Manual backups and restores for a cluster... 97
The NetWorker client in a Microsoft Cluster

An MSCS cluster is a set of nodes and virtual servers:
- On Windows 2000 Advanced Server, MSCS supports two-node clusters.
- On Windows 2000 Data Center, MSCS supports up to four-node clusters.
- On Windows Server 2003 (Enterprise or Datacenter Edition), MSCS supports up to eight-node clusters.
- On Windows Server 2008 (Enterprise or Datacenter Edition), MSCS supports up to eight-node clusters.

Microsoft Knowledge Base article: 288778, “Maximum Number of Supported Nodes in a Cluster” provides more information on the number of nodes supported by MSCS.

Each node is a physical computer with its own IP address and network name. A cluster may be configured to contain any number of virtual servers.

Each virtual server:
- Has its own IP address and network name.
- Owns a subset of shared cluster disks.
- Is responsible for starting cluster applications that can fail over from one cluster node to another.

The NetWorker client software regards each physical node and each virtual server in a cluster as a separate NetWorker client. Each NetWorker client has its own client file index on a NetWorker server, and each client is responsible for backing up its own files:
- A client associated with a physical node in the cluster backs up files on private disks attached to that node.
- A client associated with a virtual server backs up only files on disks in the cluster resource group belonging to that virtual server.

Note: To back up all of the cluster’s data, both the module and the NetWorker client software must be installed on a private disk on each physical node in the cluster. The EMC NetWorker Module for Microsoft SQL Server Installation Guide provides information about installing in a cluster environment.
The NetWorker Module in a Microsoft Cluster

The NetWorker Module for Microsoft SQL Server can back up or restore data exported by SQL Server that is running as a virtual server in an MSCS cluster.

The NetWorker Module uses the virtual server name to do the following:

◆ Connect to the appropriate SQL Server.
◆ Initialize the SQL Server VDI to accept data from, or deliver data to, the appropriate SQL Server in the cluster.
◆ Create entries in the NetWorker client file index.

The NetWorker media database or client file index is indexed according to the client that performs a particular backup. The NetWorker Module for Microsoft SQL Server creates entries under the virtual server name in the NetWorker client file index. Information about the SQL Server save sets of a virtual server is stored in the NetWorker client file index associated to that virtual server name.

Note: Using the module to back up and restore SQL Server data on a node in a cluster requires Cluster Client Connection licenses on the NetWorker server host (one for each node in the cluster).

NetWorker Power Edition includes two cluster client licenses of the same platform type. For more than two cluster nodes, additional Cluster Client Connection licenses are required. NetWorker Workgroup Edition and NetWorker NetWork Edition can back up cluster nodes only if Cluster Client Connection licenses have been added to the NetWorker server.

How the module detects SQL Server instances

When running in an MSCS cluster, the module automatically detects all active SQL Servers in the cluster, including virtual servers. This automatic detection occurs whenever:

◆ The NetWorker User for SQL Server program is started.
◆ The Select SQL Instance menu item or button is selected.
◆ A backup or restore is started.

Named instances in failover cluster configurations

The NetWorker Module for Microsoft SQL Server provides failover cluster support by using the multiple instance features provided in SQL Server. In a failover configuration, virtual servers run as either the default instance or as named instances. One default instance of a virtual server may be installed. Additional virtual servers may be installed as named instances, where each instance name must be unique within the cluster.

Multiple named instances are supported as virtual servers in a cluster configuration. The number of instances supported depends on the version of SQL Server being used. The EMC NetWorker Module for SQL Server Installation Guide and Microsoft SQL Server documentation provide more information.
Each named instance virtual server has the following qualities:

- A unique IP address, network name, and instance name.
- Data files installed on a clustered drive that belong to the same cluster group as the virtual server.

Active/Passive cluster configurations

When the NetWorker User for SQL Server program starts on the primary node, the module automatically uses the cluster virtual server as the client name for reading or writing to the NetWorker media database and client file index. If the SQL Server fails over to the secondary cluster node, opening the NetWorker User for SQL Server program on the secondary node also automatically uses the virtual server name.

If there is one virtual server running on each physical node in the cluster, an active/active cluster configuration exists, and the following occurs:

- The module automatically communicates with the virtual server running on the same physical node if no failover has occurred and each virtual server is running on a different physical node.
- The Select SQL Instance option from the Operation menu is disabled.

However, if one of the physical cluster nodes goes offline (for example, if a failover occurs) and both SQL Server virtual servers are then running on the same physical cluster node when the NetWorker User for SQL Server program starts, the Select SQL Instance dialog box appears. It lists the SQL Server instances. After selecting an instance from this dialog box, the module attempts to validate the instance as a NetWorker client.
How to run a scheduled backup

To schedule a backup of SQL Server data within a Microsoft cluster, use either the NetWorker Configuration Wizard or the NetWorker Administrator program. Refer to the appropriate release notes, for instructions on using the NetWorker Configuration Wizard, to configure a scheduled backup.

Note: When using the NetWorker Configuration Wizard to configure a scheduled backup, do not use a short name alias for virtual server nodes that are not already registered on the NetWorker server with a fully qualified domain client name.

Requirements for scheduled backups

There are several requirements for performing scheduled database backups with a SQL virtual server in a cluster environment:

◆ A NetWorker client, configured for file system backups, must be created for each physical node of the cluster. The client must be configured by using the fully qualified domain name.

 Configuration of the physical nodes for file system backup is required to back up nondatabase files on the cluster nodes. In the event of a disaster or a less significant system error, recovery of all or parts of the file system may be necessary.

 Configure the required physical node client save set. This setup must be duplicated for each physical node to insure operations continue successfully after a failover to another node.

◆ A NetWorker client, configured for database backups, must be created for each SQL virtual server to be protected.

◆ Configure the NetWorker client to either:

 ◆ Back up all databases by using MSSQL:

 ◆ Back up specific databases by using MSSQL:User Database.

 Additional databases may be added to an existing NetWorker client or a new database client may be created.

◆ The client must be configured by using the short name for the SQL virtual server, and omitting the domain specification.

 The command argument to specify virtual servers is –a virtual_server. This is typically the short name and it must match the network name parameter in MSCS. This is intended for use with long name clients. Use the fully qualified domain name for the client configuration and the –a BIOS_name option to specify the virtual server, as in the following example:

 nsrsqslsv –c vs1.belred.legato.com –a vs1...

◆ If the NetWorker Configuration Wizard is used to schedule a backup of SQL Server data within a Microsoft cluster, the client running the wizard must have Modify NetWorker administrator rights. This must be set before the wizard is run. The Edit Usergroup Administrators dialog box includes these settings.
Configure scheduled backups

To configure scheduled backups by using the NetWorker Administrator program, complete the following tasks:

- “Task 1: Create group resources for the cluster” on page 94
- “Task 2: Create Client resources for each cluster node” on page 95
- “Task 3: Create Client resources for a virtual server” on page 95
- “Task 4: Configure resources for snapshot backups (optional)” on page 96
- “Task 5: Start the Backup” on page 96

For detailed instructions on configuring NetWorker server resources, refer to the appropriate administrator’s guide.

Task 1: Create group resources for the cluster

For instructions on creating a Group resource, see “Task 2: Configure one or more group resources” on page 43.

Modify groups so that all clients that run the NetWorker Configuration Wizard have Modify NetWorker administrator rights. This must be done before the wizard is run. Figure 40 on page 94 shows the NetWorker Edit Administrator List dialog box with Modify NetWorker administrator rights.

To edit a user group:
1. Start the NetWorker Management Console.
2. Under Enterprise, select the computer to update.
3. Double-click NetWorker.
4. Select User Groups in the left pane, and double-click Administrators in the right-pane.

Figure 40 Properties dialog box for Administrators
5. Edit the attributes for the group:
 - For the Administrators group, change the Comment or the Users attribute. The Privileges attribute cannot be changed.
 - For the Users group, all attributes can be changed.
6. Click OK.

Task 2: Create Client resources for each cluster node

For information about Client resource settings, see “Task 3: Configure one or more Client resources” on page 43.

To create Client resources, edit the Client resource for each physical node of the cluster. In the NetWorker Administration program, you can select Clients in the left pane, and the right-click in the right pane to create a new resource.

Provide values for these attributes (on the General tab):

- In the Name attribute of the Client resource, list the fully qualified domain name for the SQL virtual server. For example:

 wash-2k.belred.legato.com

- In the Save set attribute, enter all.

Task 3: Create Client resources for a virtual server

To create Client resources:

1. Create the Client resource for each virtual server in the cluster. Provide values for the following attributes:
 a. In the Name attribute of the Client resource, list the short name for the SQL virtual server, and omit the domain specification. This should be the name of the virtual server, and not a node name.
 b. In the Backup command attribute on the Apps & Modules tab (for NetWorker), enter the nsrsqlsv command with the necessary options. “Using the nsrsqlsv command” on page 123 provides more information on the nsrsqlsv command syntax.
 For virtual server backups, the -a virtual_server_name command option is required.
 c. On the Globals (2 of 2) tab, grant access to all physical nodes in the cluster by adding entries similar to the following in the Remote Access attribute:
 Remote access: RemoteUser@physicalnode_hostname
 Remote user: RemoteUser (Apps & Modules tab if NetWorker release 7.3)
 Password: ********
 where:
 - RemoteUser is the account under which the backup will be run, as shown in Figure 40 on page 94.
 - physicalnode_hostname is the fully qualified domain name.
 The Remote Access attribute enables the NetWorker Module for Microsoft SQL Server server to access the cluster node to authenticate the computer (on which the virtual server is running) as a NetWorker Module for Microsoft SQL Server client before any backup or restore operation begins. Follow this step for each virtual server Client resource in the cluster.
d. On the **Apps & Modules** tab, for the **User Name** and **Password** attributes, add the username and password, respectively, for a Windows user account that has both SQL Server administrator privileges and Windows administrator privileges. The **User Name** and **Password** attributes enable the module to back up the SQL Server virtual server. Follow these steps for each virtual server Client resource in the cluster.

Task 4: Configure resources for snapshot backups (optional)

To perform snapshot backups in a Microsoft cluster, NetWorker requires that you configure the following:

1. Add the following to the NetWorker Administrators Users Group for each physical node:

 \[\text{LocalSystem@physicalnode_hostname} \]

 where `physicalnode_hostname` is the fully qualified domain name.

2. For any physical node that is configured to use a Backup account (in the **User Name** and **Password** attributes on the **Remote** tab of the Client resource), add the following to the NetWorker Administrator Users Group:

 \[\text{User_Name@physicalnode_hostname} \]

 where:

 - `User_Name` is the name of the user who has permission to back up the SQL Server clustered environment.
 - `physicalnode_hostname` is the fully qualified domain name.

Task 5: Start the Backup

Use the NetWorker Management Console to start the backup group manually, or wait for the next scheduled backup to occur.
Manual backups and restores for a cluster

A manual backup or restore operation can be run from any computer in the cluster by using one of the following:

- NetWorker User for SQL Server program
- The nsrsqslsv and nsrsqlr command

Note: Manual backups and restores can be done from any computer in the cluster, regardless of whether a failover has occurred.

From the NetWorker User for SQL Server program

To start a manual backup or restore operation in a Microsoft cluster:

1. Start the NetWorker User for SQL Server program. The **Select SQL Instance** dialog box appears.
2. Select the SQL Server instance for a backup or restore operation.
3. Configure and run the backup or restore just as you would on a stand-alone server. For instructions, see the following:
 - “Performing a backup with NetWorker User for SQL Server” on page 31
 - “Performing a restore with NetWorker User for SQL Server” on page 55

From the command prompt

To back up or restore a SQL Server virtual server, the Windows account that is used to execute the nsrsqslsv or nsrsqlr commands must be an MSCS administrator. To determine which accounts have MSCS administrator privileges, refer to the MSCS online help. If the Windows account does not have MSCS administrator privileges, the SQL Server modules cannot communicate with MSCS and the various MSCS cluster resources, including the SQL Server virtual servers.

To start a manual backup or restore, enter one of the following at the prompt:

- To back up data, enter the nsrsqslsv command.
- To restore data, enter the nsrsqlr command.

For example, to back up a SQL Server database, enter the following:

```
nsrsqslsv -a virtual_server_name -s NetWorker_server_name MSSQL:dbName
```

where:

- **virtual_server_name** is virtual server name when SQL Server is configured to run in an MSCS cluster.
- **NetWorker_server_name** is the NetWorker server to use for the backup.
- **dbName** is name of the SQL Server database to be backed up.

Specifying `-a virtual_server_name` initiates the following:

- Contact the SQL Server virtual server.
- Create save set entries under virtual_server_name in the NetWorker client index.

“Overview of the module commands” on page 122 provides more information.
This chapter addresses the following Microsoft SQL Server topics:

- Microsoft SQL Server recovery models ... 100
- Microsoft SQL Server named log marks .. 104
- SQL Server master database maintenance .. 107
- Multiple nonclustered instances of SQL Server .. 109
- How a restore interacts with SQL Server ... 111

Note: Also, consult the most recent information from Microsoft on their SQL Server products.
Microsoft SQL Server recovery models

Microsoft SQL Servers support three recovery models: full, bulk_logged, and simple.

Full recovery model

The full recovery model imposes the fewest constraints on the backup and restore process, but it requires the most log space of all recovery models. The NetWorker Module for Microsoft SQL Server enforces the following constraints based on the version of SQL Server:

- All levels of file, filegroup, and database backup are supported.
- All backup data is restorable up to the most recent transaction log.
- Point-in-time and named log mark restores are supported.

Bulk_logged recovery model

The bulk_logged recovery model also imposes a few backup constraints and supports reduced log space requirements for bulk operations. The NetWorker Module for Microsoft SQL Server enforces the following constraints differently, depending on which version of SQL Servers is managing the storage hierarchy:

- All levels of file, filegroup, and database backups are supported.
- Backup data is restorable up to the most recent transaction log.
- A point-in-time restore is not supported for SQL Servers if the following conditions apply:
 - If a bulk log change has occurred for the transaction log backup that corresponds to the current browse time.
 - If bulk changes in the transaction log that contains the time or day marker.

The NetWorker Module rolls forward all transactions to the end of the transaction log and leaves the database in an operational state.

Simple recovery model

The simple recovery model provides the fastest performance by minimally logging operations, thereby reducing log space. However, the simple recovery model does not support transaction log backups. The simple recovery model implements the most constraints on the backup and restore process. It provides significant control over how storage management operations impact system resources. The NetWorker Module for Microsoft SQL Server enforces the following constraints depending on the version of SQL Server:

- Only level full and differential database backup types are supported.
- Backup data is restorable up to the last level full or differential database backup.
- Point-in-time and named log mark restores are not supported.
Specifying database recovery models

SQL Servers allow a different recovery model to be specified for each database and for the legacy database options `trunc.log.on.chkpt` and `select into/bulk copy`. Depending on how the legacy options are set in SQL Server, they map to the new recovery models shown in Table 18 on page 101. This table describes the SQL database recovery models and how older database properties map to new properties. The transaction log operations are available only for databases with the full recovery model. All other databases only support full database backup; incremental backups are not supported.

<table>
<thead>
<tr>
<th>Database option</th>
<th>Select into/bulk copy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>True</td>
</tr>
<tr>
<td>trunc.log.on.chkpt</td>
<td>Simple</td>
</tr>
<tr>
<td></td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>Bulk_Logged</td>
</tr>
</tbody>
</table>

Whether or not a transaction log and the descendent filegroups and files of the database are available for backup or restore, depends on the recovery model specified in SQL Server. Based on the constraints enforced by the recovery model, the NetWorker Module modifies how items in the SQL Server storage hierarchy are displayed in the Backup and Restore windows. For more information about how these constraints are visually interpreted in the NetWorker User for SQL Server program, see “Fake objects” on page 25.

The NetWorker Module for Microsoft SQL Server enforces different backup and restore constraints, depending on which version of SQL Server is being managed. Table 19 on page 101 provides an overview of the available backup types that the module supports for the recovery models available in SQL Server.

<table>
<thead>
<tr>
<th>Backup Type</th>
<th>Full</th>
<th>Bulk_Logged</th>
<th>Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>All levels</td>
<td>All levels</td>
<td>Full and differential</td>
</tr>
<tr>
<td>Filegroup</td>
<td>All levels</td>
<td>All levels</td>
<td>None</td>
</tr>
<tr>
<td>File</td>
<td>All levels</td>
<td>All levels</td>
<td>None</td>
</tr>
<tr>
<td>Fliestream data</td>
<td>All levels</td>
<td>All levels</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 20 on page 102 provides an overview of the various backup and restore functions that this module supports for the recovery models available in each version of SQL Server.

Table 20 Supported backup and restore functions for SQL Server recovery models

<table>
<thead>
<tr>
<th>Function</th>
<th>Full</th>
<th>Bulk_Logged</th>
<th>Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction Log Backup</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Point-in-time Restore</td>
<td>Yes</td>
<td>Maybe(^a)</td>
<td>No</td>
</tr>
<tr>
<td>Named Log Mark Restore</td>
<td>Yes</td>
<td>Maybe</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^a\) Point-in-time restore is not supported if bulk changes are present in the transaction log that contain the time or day marker.

Microsoft SQL Server documentation provides more information about setting recovery models for SQL Server data.

Changing the recovery model for a database

SQL Server allows the recovery model for a database to be changed. However, the NetWorker Module for Microsoft SQL Server does not enforce the constraints of the new recovery model after a change. Therefore, changing the recovery model might impact the current backup and restore strategies for a database. The following sections provide instructions to prepare for the recovery model change, as well as backup strategies for maintaining the consistency of the SQL Server storage hierarchy after the change.

Change from full or bulk_logged to simple

To change to the simple recovery model from full or bulk_logged:

1. Before changing the recovery model, perform an incremental database backup to maintain the transaction log files.
2. Change the recovery model to simple.
3. After changing the recovery model, modify the backup strategy to halt execution of level incremental database backups.

If the change to simple is only temporary, it is not necessary to modify the backup schedule, because the backup level is automatically promoted to full if the recovery model (or legacy database status bit) does not support the specified level.

Change from bulk_logged to full

Follow these steps when changing from bulk_logged to the full recovery model:

1. Change the recovery model to full.
2. If performing a point-in-time restore is anticipated, perform a level incremental database backup to maintain the transaction log files.

It is not necessary to modify the backup strategy.
Change from simple to full or bulk_logged

Because the simple recovery model has many more constraints than the full and bulk_logged models, the NetWorker Module for Microsoft SQL Server might allow certain scenarios to occur. However, under normal conditions these situations would be flagged as warnings or failures by the SQL Server.

The following scenarios highlight the importance of modifying the backup strategy after changing from simple to a full or bulk_logged recovery model:

- Incremental backups can be created if the most recent level full or differential database backup was created when the database recovery model was simple. SQL Server enables the transaction log backup to occur, but displays a warning.

- Restore of a level incremental database backup cannot be performed if the level full or differential database backup that is being restored was created when the database recovery model was simple. This is consistent with SQL Server no recover behavior.

 Note: The restore must be reinitiated by using the most recent level full database backup. All database transactions performed after the backup is created will be lost.

To change from simple to a full or bulk_logged recovery model:

1. Change the recovery model to full or bulk_logged.
2. Perform a level full or differential database backup.
3. Modify the backup strategy to include level incremental database backups.
Microsoft SQL Server named log marks

Microsoft SQL Server enables enhanced point-in-time restore operations by allowing named log marks to be specified during transaction creation. Database applications create named log marks when transactions are performed. The marks enable access to specific transaction points in a database transaction log backup. The NetWorker Module for Microsoft SQL Server restores to the beginning or end of a named log mark during a database restore. Restoring data by using named log marks is an improvement over point-in-time restore. The time associated with restoring to a specific transaction can be more accurately determined.

When a named log mark is created in the SQL Server msdb, the log mark time is saved to the millisecond. However, the NetWorker software’s time format, which is used to specify point-in-time restore, only supports granularity to the second. If named log marks with duplicate names are created within a second of each other, the module restores to the most recently named log mark.

Transaction log maintenance

The NetWorker Module for Microsoft SQL Server provides implicit and explicit methods for managing SQL Server database transaction logs:

- Implicit management uses log backups to manage log space. This management can occur when:
 - A backup schedule is implemented that includes incr (transaction log level) backups.
 - You run the nsrsqsqlsv command with the -l incr option.
- Explicit management specifies the nsrsqsqlsv command on the command line, with or without the -T option (Truncate Only) or the -G option (No Log). Both command options result in the log being truncated before the backup, and both options are compatible with level full and level 1 (differential) backups.

After the backup completes, the SQL Server truncates the transaction log if the following applies:

- The NetWorker Module for Microsoft SQL Server determines that the database does not support transaction log backups.
- No -T or -G option is specified.

Note: SQL Server databases that use the simple recovery model do not use transaction log backups.

How to prevent log overflow

In Windows, prevent database logs from overflowing available log space by creating an alert in the SQL Server Performance Monitor that forces an incremental backup when the database’s log space reaches a certain capacity (for example, 80% full). An alert is a user-defined response to a SQL Server event. An incremental (transaction log) backup truncates the logs and clears disk space.
How to create an alert for SQL Server

To create an alert for SQL Server:

1. Create a batch file (for example, sqlalert.bat) that contains the `nsrsqlsv` command and any appropriate command flags.

 For example:

   ```
   installpath\nsr\bin\nsrsqlsv.exe -s NetWorker_server_name -l incr -b pool_name MSSQL:dbName
   PAUSE
   ```

 where:

 - `installpath` is the pathname where the NetWorker Module software is installed. The `pause` command is optional.
 - `NetWorker_server_name` is the hostname of the NetWorker server to use for the backup.
 - `pool_name` is the backup volume to which the data is to be saved.
 - `dbName` is the name of the database to back up.

 Note: Appendix A, “NetWorker Module Commands,” provides the complete syntax of the NetWorker Module `nsrsqlsv` and `nsrsqlrc` commands, and an explanation of the command options.

2. Perform one of the following:

 - For SQL Server 2000, select **Profiler** in the Microsoft SQL Server program.

3. From the **Tools** menu, select **Performance Monitor**.

4. In the left pane, double-click **Performance Logs** and **Alerts**.

5. Click **Alerts**.

 Any current alerts appear in the right pane.

6. Right-click **Alerts** and select **New Alert Settings** from the shortcut menu.

7. In **New Alert Settings** dialog box, enter the name of the new alert in the **Name** text box, and then click **OK**.

8. Under the **General** tab, click **Add**.

9. Set the options in the **Select Counters** dialog box as follows:

 a. From the **Performance Object** list, select **SQL Server: Databases**.

 b. Under the **Select Counter From List** option, select **Percent Log Used**.

 c. Under the **Select Instances From List** option, select the relevant database.

 d. Click **Add**, and then click **Close**.

10. From the **Alert When the Value Is** list, select **Over**.

11. In the **Limit** text box, enter 80.

12. In the **Interval** text box, enter 10 (or more) to enable enough time in minutes to run an incremental (transaction log) backup.

13. From the **Units** list, select **Minutes**.
14. Under the Action tab, click Run This Program, then enter the full path of the batch file. For example:

C:\Program Files\nsr\bin\sqlalert.bat

15. Click OK.
SQL Server master database maintenance

The master database contains information about all SQL Server databases on the SQL Server host. The master database can be restored in one of the following ways:

- For SQL Server 2000, by using the SQL Server Enterprise Manager to rebuild the master database. For SQL Server 2005 and 2008, by using the Microsoft SQL Server Management Studio to rebuild the master database. The Microsoft SQL Server documentation provides detailed instructions on rebuilding the master database.
- By restoring the data for the master database and other SQL Server databases from the NetWorker server. “Recovery of SQL Server” on page 119 provides more information on restoring the master database.

Database consistency check

Use the -j option with the nsrsqslsv and nsrsqlrc commands to request that SQL Server run a comprehensive database consistency check (DBCC) before a backup or after a restore. The DBCC includes the following automatic checks:

- DBCC CHECKDB database_name
- DBCC CHECKALLOC database_name
- DBCC TEXTALL database_name
- DBCC CHECKCATALOG database_name

For the entire DBCC to complete successfully, each of these tests must succeed.

Note: By default, the option to run a DBCC is disabled. “Perform a database consistency check” on page 108 provides information about how to trigger a DBCC before a scheduled save is initiated.

If this option is enabled and the DBCC is completed successfully, the NetWorker Module for Microsoft SQL Server proceeds with a backup of the specified databases.

If the DBCC does not complete successfully, the backup is terminated and the NetWorker Module for Microsoft SQL Server displays a message to indicate the DBCC success or failure.

Database consistency on a restored database can also be checked by initiating a restore from the command line on the restore host by using the -j command line option with the nsrsqrlrc command. This command invokes the DBCC on the database after the restore operation finishes.

You cannot check database consistency from the NetWorker User for SQL Server program.

Appendix A, “NetWorker Module Commands,” provides more information about nsrsqslsv and nsrsqlrc command options.
Perform a database consistency check

To perform a DBCC from the NetWorker Management Console before a scheduled backup:

1. From the Administration window, click Configuration.
2. In the expanded left pane, click Clients.
3. In the right-side pane, right-click the client you want, and select Properties.
4. In the Apps & Modules tab of the Properties dialog box, in the Backup Command attribute, enter nsrsqlsv -j.
5. Click OK.

To perform a DBCC from the Windows command prompt before a manual backup:

1. Log in to the client host with administrator privilege.
2. Enter nsrsqlsv -j at a Windows command prompt.

For large databases, the running of a database consistency check can take several hours. For production systems, the -j option should be used with discretion.
Multiple nonclustered instances of SQL Server

Microsoft SQL Server can run multiple copies of SQL Server on a single computer. This feature is called multiple instance.

The first installation of SQL Server on a computer is called the default instance. The name of the default instance is the network name for the local computer. The NetWorker Module for Microsoft SQL Server supports backup and recovery of default instances.

Additional installations of SQL Server on a computer are called named instances. The NetWorker Module for Microsoft SQL Server supports recovery from the default instance or named instances of SQL Server, using a copy restore, to any instance of SQL Server. This includes recovery operations when the destination server is different from the source.

Each named instance has a unique instance name in the form:

\code{computerName\instanceName}

where:

- \textit{computerName} is the network name of the computer.
- \textit{instanceName} is the logical name of the named instance.

\textbf{Note:} When naming a SQL database or an instance, select names that are unique. Poor database name choices, for example, include the name SQL Server uses to identify itself (\textit{MSSQL:}) and names of installed SQL instances you have installed.

The syntax for specifying a nonclustered instance of SQL Server at a command prompt is as follows:

\texttt{MSSQL$:instanceName:[dbName ...][.fgName ...][.fileName ...]}

An entry of MSSQL: for the Save Set attribute in the Client resource yields a backup of all databases on the SQL Server host. For detailed guidelines on specifying the save sets for an instance, see “Backup and restore command syntax for SQL Server data” on page 133.

The following restrictions apply when running multiple instances:

- For SQL Server 2000, Microsoft supports up to 16 named SQL Server instances to run simultaneously. For SQL Server 2005 and 2008, up to 50 named instances can be run.
- The \texttt{nsrqsqlsv} and \texttt{nsrqslrc} commands only support specification of one instance at a time. If save sets for more than one instance are specified, the backup or restore operation fails.

Index entries for nonclustered named instances are created by using the local host on which the instance is running. To differentiate backups for the default instance and named instances, the index name has been extended to logically partition the index for a client.

All running named instances are maintained in the client file index directory, excluding clustered instances and the default instance. This named instance directory is created at the end of each traditional or PowerSnap Module backup. Running \texttt{nsrinfo} after backups verifies the existence of this directory, for example:

\texttt{%SystemDrive% nsrinfo -V -L -n mssql current SQL server instance}
The sample output from the command provides information about the named instance directories \textit{TWO} and \textit{THREE}:

\textbf{MSSQL}: $/\text{, size}=252, \text{off}=400, \text{app}=\text{mssql (14)}, \text{date}=1100712016 \text{ Wed Nov 17 09:20:16 2006}
\text{da_dir1-> current SQL server instance\TWO}
\text{da_dir1-> current SQL server instance\THREE}
How a restore interacts with SQL Server

The NetWorker Module starts and stops the SQL Server and dependent services when a restore takes place. The following sections provide details on how a NetWorker Module restore interacts with the SQL Server and dependent services:

- “Restoring the SQL Server master database” on page 111
- “Restoring the SQL Server master database in a cluster” on page 111
- “Restoring the SQL Server msdb database” on page 112
- “Restoring both the SQL Server master and msdb databases” on page 112

Restoring the SQL Server master database

When restoring the SQL Server master database, the nsrsqlrc program automatically stops and restarts the SQL Server services appropriately, as follows:

1. Before the restore begins, the module stops the SQL Server and other dependent services.

 Note: When Analysis Services is running, it may use the only database connection if SQL Server is in single user mode. Analysis Services must be stopped before restoring the master database.

2. The module starts the SQL Server in single-user mode.
3. The module performs the restore.
4. After the restore finishes, the module waits for the SQL Server to shut down.
5. The module restarts the SQL Server in production mode.

 Note: When restoring the master database, there can be timing issues related to stopping and starting of services. Manually stop all SQL Server services, except for SQL Server itself, before initiating the restore.

Restoring the SQL Server master database in a cluster

When restoring the SQL Server master database running in a cluster configuration, the nsrsqlrc program controls the SQL cluster resources, as follows:

1. Before the restore begins, the module stops the SQL Server and all dependent cluster resources, including the SQL Server Agent.
2. The module starts the SQL Server in single-user mode.
3. The module performs the restore.
4. After the restore finishes, the module waits for the SQL Server to shut down.
5. The module restarts the SQL Server and dependent cluster resources.

 Note: When restoring the master database, there can be timing issues related to stopping and starting of services. Manually stop all SQL Server services, except for SQL Server itself, before initiating the restore.
Restoring the SQL Server msdb database

When restoring the SQL Server msdb database, the `nsrqsqlrc` program automatically stops and restarts the SQL Server services appropriately, as follows:

1. Before the restore begins, the NetWorker Module stops the SQL Server Agent.
2. The NetWorker Module performs the restore.
3. After the restore finishes, the NetWorker Module restarts the SQL Server Agent.

Restoring both the SQL Server master and msdb databases

When restoring the SQL Server master database along with the msdb database, the `nsrqsqlrc` program automatically stops and restarts the SQL Server appropriately, as follows:

1. Before the restore begins, the NetWorker Module stops the SQL Server and other dependent services, including the SQL Server Agent.
2. The module starts the SQL Server in single-user mode.
3. The module restores the master database.
4. After the restore finishes, the module waits for the SQL Server to shut down.
5. The NetWorker Module restarts the SQL Server in production mode.
6. The module restores the msdb database.
7. The module restarts the dependent services, including the SQL Server Agent.

Note: When restoring the master database, there can be timing issues related to stopping and starting of services. Manually stop all SQL Server services, except for SQL Server itself, before initiating the restore.
This chapter includes the following sections:

- Disaster recovery features ... 114
- Procedures for disaster recovery ... 116

Note: The SQL Server databases must be restored in the correct order. Follow the database restore steps in Chapter 4, “Restoring SQL Server Data.”

Because of the many variations of system configurations, providing recovery instructions for all possible disasters is not practical. The examples that follow provide general principles and procedures for restoring data. Before beginning a SQL Server disaster recovery, review the following:

- *EMC NetWorker Disaster Recovery Guide*
- Microsoft SQL Server Books Online
- *EMC NetWorker Release Notes*
Disaster recovery features

The NetWorker Module for Microsoft SQL Server provides the following features for disaster recovery.

System database restore automation

Certain system databases require SQL Server service control, including the master and the msdb databases. NetWorker Module for Microsoft SQL Server automates the control of these services as follows:

- For the master database, the SQL Server restarts in single-user mode as required by SQL Server.
- For the msdb database, the SQL Agent shuts down to close connections to the msdb database.

“How a restore interacts with SQL Server” on page 111 provides more information on how the NetWorker Module controls SQL Server services.

Note: NetWorker Module for Microsoft SQL Server does not support snapshot backups or recoveries of the SQL Server master database. Use a traditional backup to restore the master system database during a disaster recovery.

Database restore order

When restoring a complete backup of all databases, or when restoring certain system databases, the restore must occur in a specific order. When system databases are present in the restore list, the NetWorker Module for Microsoft SQL Server ensures that the restore order follows SQL Server procedures as follows:

1. The master database is always restored first. This ensures that metadata present in the master database is correct for all subsequent restored databases.
2. The msdb database is always restored after the master database and before all other databases. This ensures that scheduling and other system data present in the msdb database are correct for all subsequent restored databases.
3. The model database is always restored after master and msdb databases, and before all other databases. This ensures that the database configuration is correct for all subsequent databases.

SQL Server startup complete detection

When the SQL Server starts, it launches a database startup process. SQL Server enables user connections while the startup process is running. However, if the startup process is interrupted by a database RESTORE query, any database that has not yet started is marked as suspect. When the interruption occurs, subsequent restores of the msdb database fails. Subsequent restores of any user database might also fail unless the Overwrite the Existing Database attribute is specified in the Properties dialog box.

NetWorker Module for Microsoft SQL Server waits for SQL Server to complete the database startup process for all databases before starting a restore. The NetWorker Module for Microsoft SQL Server waits for the restore of the master database to
complete. This wait process enables a proper restore of the msdb database and user databases following a SQL Server startup.

Note: Always use the `-f` option with the `nsrsqlrc` command for restore operations that follow a SQL Server startup.

Overwriting capability

Use the Files tab in the Properties dialog box of the NetWorker User for SQL Server program to specify overwriting all databases during a restore. For further details, see the Properties dialog box in Figure 32 on page 76.

Note: The NetWorker Module does not handle all dependent services. When restoring application services, such Metadata or Replication services, as well as the databases on which these services depend, they must be manually shut down.

NetWorker Module for Microsoft SQL Server does not ensure that all connections to a database are closed prior to restoring a database as required by SQL Server. Such open connections must be manually terminated. The Microsoft SQL Server Books Online provides more information.
Procedures for disaster recovery

Use the following instructions for disaster recovery if NetWorker Module binary files or SQL Server binary files are damaged or lost:

- “Recovery of a damaged primary disk” on page 116
- “Recovery of a damaged binary disk” on page 116
- “Recovery of SQL Server and NetWorker server” on page 117
- “Recovery of SQL Server without reinstalling” on page 118
- “Recovery of SQL Server” on page 119

The instructions explain how to recover from a disaster on a NetWorker Module for Microsoft SQL Server host for Windows 2000 or Windows Server 2003 with SQL Server.

For more information about using NetWorker software for disaster recovery, refer to the EMC NetWorker Disaster Recovery Guide.

Recovery of a damaged primary disk

If the primary disk with critical SQL Server data is damaged, do the following:

1. Shut down SQL Server.
2. Run the Rebuild Master utility, `rebuildm`, located in the SQL ...\Binn directory.

 The Rebuild Master utility requires SQL system database files in the `Data` directory of the SQL Server installation CD-ROM or shared network drive.

 - Copy these files from the installation CD-ROM to a temporary location.
 - Remove the read-only attributes.
 - Direct the Rebuild Master utility to use the temporary location as the source directory for data files.
3. Restart SQL Server.
4. Use the `replace` option to restore the SQL Server master database and the `msdb` database.
5. Restore the other SQL application databases.

 Note: To run steps 4 and 5 as a single operation from the command line, enter the following:

   ```
   snsqlrc -s... -f MSSQL:
   ```

 To use the NetWorker User for SQL Server to complete steps 4 and 5, see “Use the NetWorker User for SQL Server program to complete disaster recovery” on page 119.

Recovery of a damaged binary disk

If the disk with the SQL Server binaries is damaged, do the following:

1. Shut down SQL Server.
2. Restore the ALL save set.
3. Restart the computer.
4. Shut down SQL Server.
5. Run the Rebuild Master utility, `rebuildm`, located in the SQL ...\Binn directory.
The Rebuild Master utility requires SQL system database files in the **Data** directory of the SQL Server installation CD-ROM or shared network drive.

- Copy these files from the installation CD-ROM to a temporary location
- Remove the read-only attributes.
- Direct the Rebuild Master utility to use the temporary location as the source directory for data files.

6. Restart SQL Server.

7. Use the **replace** option to restore the SQL Server master database and the msdb database.

8. Restore the other SQL application databases.

Note: To run steps 7 and 8 as a single operation from the command line, enter the following:

```
nsrsqlrc -s... -f MSSQL:
```

To use the NetWorker User for SQL Server to complete steps 7 and 8, see “Use the NetWorker User for SQL Server program to complete disaster recovery” on page 119.

Recovery of SQL Server and NetWorker server

If the disks with the SQL Server binaries and the NetWorker online indexes (the *nsr* file system) or the SQL Server data are damaged, then perform the following steps:

1. Restore the NetWorker binaries and online indexes. The *EMC NetWorker Disaster Recovery Guide* provides details.

2. Perform one of the following to reinstall the NetWorker software:
 - If the computer that failed was the NetWorker **server**, reinstall the NetWorker server software.
 - If the computer that failed was a NetWorker **client**, reinstall the NetWorker client software.

3. Restore the ALL save set.

4. Restart the computer.

5. Shut down SQL Server services if they are running.

 The Rebuild Master utility requires SQL system database files in the **Data** directory of the SQL Server installation CD-ROM or shared network drive.

 - Copy these files from the installation CD-ROM to a temporary location.
 - Remove the read-only attributes.
 - Direct the Rebuild Master utility to use the temporary location as the source directory for data files.

6. Run the Rebuild Master utility, **rebuildm**, in the SQL …\Binn directory.

7. Restart SQL Server.

8. Use the **replace** option to restore the SQL Server master database and the msdb database.

9. Restore the other SQL application databases.
Recovery of SQL Server without reinstalling

Use this procedure to recover the SQL Server when the server does not need to be reinstalled.

To perform a disaster recovery of the SQL Server without having to reinstall it:

1. Reinstall the operating system.
2. Perform one of the following to reinstall the NetWorker software:
 • If the computer that failed was the NetWorker server, reinstall the NetWorker server software.
 • If the computer that failed was a NetWorker client, reinstall the NetWorker client software.
3. Restore the ALL save set.
4. Restart the computer.
5. Shut down SQL Server.
 The Rebuild Master utility requires SQL system database files in the Data directory of the SQL Server installation CD-ROM or shared network drive.
 • Copy these files from the installation CD-ROM to a temporary location.
 • Remove the read-only attributes.
 • Direct the Rebuild Master utility to use the temporary location as the source directory for data files.
6. Run the Rebuild Master utility, rebuildm, in the SQL ...\Binn directory.
7. Restart SQL Server.
8. Use the replace option to restore the SQL Server master database and the msdb database.
9. Restore the other SQL application databases.
 The SQL Server should now be restored to the most recent backup.

Note: To run steps 8 and 9 as a single operation from the command line, enter the following:
nsrsqlrc -s... -f MSSQL:

To use the NetWorker User for SQL Server to complete steps 8 and 9, see “Use the NetWorker User for SQL Server program to complete disaster recovery” on page 119.
Recovery of SQL Server

To recover the SQL Server:
1. Reinstall the operating system.
2. Perform one of the following to reinstall the NetWorker software:
 - If the computer that failed was the NetWorker server, reinstall the NetWorker server software.
 - If the computer that failed was a NetWorker client, reinstall the NetWorker client software.
3. Recover or reinstall the SQL Server software.
4. Start SQL Server.
5. Use the replace option to restore the SQL Server master database and the msdb database.
6. Restore the other SQL application databases.

Note: To run steps 5 and 6 as a single operation from the command line, enter the following:

```bash
nsrsq1rc -s... -f MSSQL:
```

To use the NetWorker User for SQL Server to complete steps 8 and 9, see “Use the NetWorker User for SQL Server program to complete disaster recovery” on page 119.

Use the NetWorker User for SQL Server program to complete disaster recovery

To complete the disaster recovery by using the NetWorker User for SQL Server program:
1. Click Restore.
2. Select Normal, and then click Continue.
 The Restore (Normal) window appears.
3. Right-click the SQL Server root and select Mark All Databases.
4. From the Options menu, select Restore Options.
 The Restore Options dialog box is displayed.
5. Click Automatically Overwrite Any Database Marked for Restore, and then click OK.
6. Click Start.
This appendix provides syntax, notation, and related information for NetWorker Module for Microsoft SQL Server commands and command options. Command-line examples are provided.

This appendix includes the following main sections:

- Overview of the module commands... 122
- Using the nsrsqlsv command... 123
- Using the nsrsqlrc command... 126
- Using the nwmssql command... 132
- Backup and restore command syntax for SQL Server data............................ 133
Overview of the module commands

NetWorker Module for Microsoft SQL Server commands perform the following functions:

- **nsrsqlsv** backs up the specified SQL Server data objects. “Using the nsrsqlsv command” on page 123 provides more information.
- **nsrsqlrc** restores the specified SQL Server data objects. “Using the nsrsqlrc command” on page 126 provides more information.
- **nwmssql** invokes the client graphical user interface. “Using the nwmssql command” on page 132 provides more information.

Descriptions, command options, and usage scenarios for each command are defined in the following sections. However, when initiating the commands, keep in mind these notes regarding syntax:

- Case is very important when specifying command-line flags. Each command option is either lowercase or uppercase and, frequently, both the cases of a letter are included in the set of command options. For example, -c specifies the NetWorker client name, while -C specifies compression of the backup data.
- Depending on the command option, the space separator between an option and its corresponding argument can be optional, required, or not allowed. For example, the following expressions are both valid:
 - `--backup_level`
 - `--1backup_level`

 While the following expression is invalid because a space is not allowed between the + argument and `log_mark_name`:
 - `--M + log_mark_name`
 - Brackets ([]) are used to denote the optional portions of a command (for example, command options and corresponding arguments, if any). When initiating an actual backup or restore operation, do not include brackets.
- Data items must follow:
 - All other command options.
 - Parameters on the command line.

An application log is generated for both `nsrsqlsv.exe` and `nsrsqlrc.exe` programs. The logs are written into the `nsr\applogs` folder on the SQL Server host. The logs are cumulative and are appended each time the `nsrsqlsv.exe` or `nsrsqlrc.exe` program runs. The log space management is rudimentary. The log is truncated when disk space is exhausted. “Error logs for backup and recovery” on page 28 provides more information about application logs.
Using the nsrsqlsv command

The *nsrsqlsv* command is used to back up SQL Server data objects, which consist of files, filegroups, and databases.

To initiate a backup operation, specify *nsrsqlsv* and its command options for the Backup Command attribute in the Client resource or from a Windows command prompt.

To modify the Backup Command attribute:

1. From the Administration window, click **Configuration**.
2. In the expanded left pane, click **Clients**.
3. In the right-side pane, right-click the client you want, and select **Properties**.
4. In the **Apps & Modules** tab of the Properties dialog box, enter *nsrsqlsv* and any needed command options in the **Backup Command** field.
5. Click **OK**.

Note: The `-b` and `-l` command options are valid only for manual backups initiated from a Windows command prompt on a client host. Do not use either of these options when initiating a scheduled save in the NetWorker Administrator program.

Command syntax for nsrsqlsv

The *nsrsqlsv* command syntax is:

```
nsrsqlsv [-CGjqRTvkuHZ] [-a virtual_server_name]
[-b pool_name][-c client_name] [-f aes][-g group ]
[-h dbName] [-I input_file] [-l backup_level]
[-N name] [-s NetWorker_server_name]
[-S stripes_count][[-U username] [-P password]
[MSSQL:dbName dbName.fgName dbName.fgName.filename ...][-X]
```

Command options for nsrsqlsv

Table 21 on page 123 lists command options.

<table>
<thead>
<tr>
<th>Command options</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a</code></td>
<td>Specifies the virtual server name when SQL Server is configured to run in an MSCS cluster. For more information, see Chapter 5, “Backup and Recovery for Microsoft Cluster Servers.”</td>
</tr>
<tr>
<td><code>-b</code></td>
<td>Assigns a destination pool for a save set. Specification of <code>-b pool_name</code> overrides all other pool-selection criteria either provided by the NetWorker software, or specified in the NetWorker User for SQL Server Backup Options dialog box. The pool must be created with a corresponding label template before running a command that includes the <code>-b</code> option.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>Specifies the NetWorker client name for which the SQL Server data is to be backed up.</td>
</tr>
<tr>
<td><code>-C</code></td>
<td>Specifies compression of the backup data before the NetWorker client sends the data to the NetWorker server.</td>
</tr>
<tr>
<td><code>-f aes</code></td>
<td>Enables the NetWorker server to back up data using AES encryption.</td>
</tr>
<tr>
<td><code>-g</code></td>
<td>Specifies the save group. The NetWorker server and the <code>savegrp</code> command use the <code>group</code> parameter to select the media pool.</td>
</tr>
</tbody>
</table>
NetWorker Module Commands

<table>
<thead>
<tr>
<th>Command options</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-G</code></td>
<td>Specifies a NO_LOG transaction log backup before backing up the database. This command option is valid only for level full backups.</td>
</tr>
<tr>
<td><code>-h</code></td>
<td>Is used to exclude a database from the backup. For example: <code>nsrsqlsv -s bv-aditya.belred.legato.com -h master -h model MSSQL:</code></td>
</tr>
<tr>
<td><code>-H</code></td>
<td>Uppercase <code>-H</code> uses the NORECOVERY option when backing up transaction logs. It leaves the database in Restoring state.</td>
</tr>
<tr>
<td><code>-I</code></td>
<td>Specifies a text file that lists multiple SQL Server save sets, for example: <code>MSSQL$SQL2000:database_1 MSSQL$SQL2000:database_2 ... MSSQL$SQL2000:database_100</code> The <code>-I</code> option may also be specified with the <code>nsrsqlsv</code> command for the Backup Command attribute in the NetWorker Client resource.</td>
</tr>
<tr>
<td><code>-j</code></td>
<td>Performs a database consistency check before initiating the backup. For more information about this option, see “Database consistency check” on page 107.</td>
</tr>
<tr>
<td><code>-k</code></td>
<td>Perform checksum before writing to media.</td>
</tr>
</tbody>
</table>
| `-l` | Specifies the backup level. Valid values are as follows:
 - Full
 - Level 1 (equivalent to specifying `diff` in BusinessSuite Module 2.0 and 2.0.1)
 - Incr (equivalent to specifying `xlog` in BusinessSuite Module 2.0 and 2.0.1).
 For more information about which backup levels are supported for various SQL Server data objects, see “Combining data objects to create backup levels” on page 41.
 Note: The `-l` option is valid only for manual backups initiated from a Windows command prompt on a client host. For scheduled backups, set the backup level in the Set Level dialog box of the Schedule resource in the NetWorker Administrator program. Do not use the `-l` option when initiating a backup in the NetWorker Administrator program from the Backup Command attribute of the Edit Client dialog box (under the Remote Tab).
 Sample outputs for each of the three different levels of backup follow:
 - Full backup of the database (my_database) to a specified NetWorker server:
    ```bash  
    nsrcqlsv -s NetWorker_server_name my_database  
    nsrcqlsv: Backing up my_database...  
    nsrcqlsv: BACKUP database my_database TO  
    virtual_device='BSMSQL' WITH stats  
    nsrcqlsv: my_database level=full, 33 MB 00:00:05  
    1 file(s)  
    ```  
 - Differential backup:
    ```bash  
    nsrcqlsv -s NetWorker_server_name -l diff my_database  
    nsrcqlsv: Backing up my_database...  
    nsrcqlsv: BACKUP database my_database TO  
    virtual_device='BSMSQL' WITH differential, stats  
    nsrcqlsv: my_database level=diff, 719 KB 00:00:05  
    1 file(s)  
    ```  
 For guidelines on formatting these parameters, see “Backup and restore command syntax for SQL Server data” on page 133. |
Incremental backup:
```
nsrsqlsv -s NetWorker_server_name -l incr my_database
```  
```
nsrsqlsv: Backing up my_database...
nsrsqlsv: BACKUP log my_database TO virtual_device = 'BSMSQL'
nsrsqlsv: my_database level=incr, 61 MB 00:00:05 1 file(s)
```

At least one SQL Server data item (file, filegroup, or database) must be specified, and the data items and list of data objects must follow all other command options and parameters on the command line.

- **-N** Specifies the symbolic name of the save set. By default, the most common prefix of the path arguments is used as the save set name.

- **-P** Specifies the Microsoft SQL Server user password. When the -U username command option is specified, the password command option must also be provided, as follows:
```
nsrsqlsv -s NetWorker_server_name -U username -P password
```

Use the SQL Server username and password to log onto SQL Server by using SQL Server integrated security.

- **-q** Displays nsrsqlsv messages in quiet mode; only summary information and error messages are displayed.

- **-R** Uses the NO_TRUNCATE option when backing up transaction logs.

- **-s** Specifies the NetWorker server to use for the backup operation.

- **-S** Backs up the specified data items using n stripes.

Note: To use backup and restore striping successfully, see the striping configuration described in Appendix B, “Striped Backup and Recovery”.

- **-T** Performs a TRUNCATE_ONLY transaction log backup before backing up the database; valid for full backups only.

- **-u** Continue the backup even in the event of a checksum error.

- **-U** Specifies the Microsoft SQL Server username. When this command option is specified, the -P password command option must also be provided, as follows:
```
nsrsqlsv -s NetWorker_server_name -U username -P password
```

Use the SQL Server username and password to log onto SQL Server using SQL Server integrated security.

- **-v** Displays nsrsqlsv messages in verbose mode, providing detailed information about the progress of the backup operation.

- **-X** Indicates that SQL Server internal backup compression is used.

- **-Z** Applies to the backup of up databases for SQL Server 2005, and is usually used in the online restore scenario from the command line. The -Z option specifies that the incremental (transaction log) backup after restore is not promoted to full backup. Without the -Z option, the backup is promoted to full.
Using the nsrsqlrc command

The nsrsqlrc command restores specified SQL Server data (files, filegroups, and databases) from the NetWorker system. To initiate a restore operation, specify nsrsqlrc and any of its command options at a Windows command prompt.

Command syntax for nsrsqlrc

The nsrsqlrc command syntax is as follows:

```
nsrsqlrc [-fjqVku] [-$ instance_name]
 [-a virtual_server_name]
 [-c client_name][[-d MSSQL:destination_dbName]
 [-e pass_phrase]
 [-C file=path,file2=path2,...][[-M [+|-]log_mark_name]
 [-R fgName1,fgName2,...] [-t date]
 [-s NetWorker_server_name]
 [-S normal|standby:undo_file|norecover][-U username]
 [-P password][[-z]
 [MSSQL: dbName dbName.fgName dbName.fgName.filename ...]
```

Command options for nsrsqlrc

The command options are as follows:

<table>
<thead>
<tr>
<th>Command options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-$</td>
<td>Specifies a named SQL Server instance as the source of the copy restore. The syntax is: <code>-S MSSQL$instance_name</code>: where: <code>-S</code> specifies to use a named instance instead of the default instance as the source for the copy restore. <code>$instance_name</code> is the name of the instance to use. The following example copies the database Sales from the SQL Server prod-sql, instance Venus, to the SQL Server test-sql, instance Mars: <code>nsrsqlrc -s nw_server.company.com -c prod-sql.company.com -d MSSQL$MARS: -d "MSSQL$VENUS:Sales" -C " 'Sales'='D:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\Sales.mdf', 'Sales_log'='D:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\Sales_log.ldf'" -t "Fri Dec 01 08:01:19 2006" 'MSSQL$VENUS:Sales' If the </code>-S<code>switch is used, and no instance is named, for example</code>"-S MSSQL"<code>, or the </code>-S` switch is omitted, the default instance is used.</td>
</tr>
<tr>
<td>-a</td>
<td>Specifies the virtual server name when SQL Server is configured to run as a clustered service in an MSCS cluster. Chapter 5, "Backup and Recovery for Microsoft Cluster Servers," provides more information.</td>
</tr>
<tr>
<td>-c</td>
<td>Specifies the NetWorker client name from which the SQL Server data is to be restored.</td>
</tr>
</tbody>
</table>
Using the nsrqlrc command

Table 22 Command options for nsrqlrc (page 2 of 6)

<table>
<thead>
<tr>
<th>Command options</th>
<th>Description</th>
</tr>
</thead>
</table>
| -C | Copies the database being restored to either the same SQL Server or a different SQL Server. It can be used for normal, copy, and partial restores. Use the relocation list to specify new locations for restored database files. The relocation list is composed of pairs of logical database filenames and fully qualified domain database filename relocation paths. Specify the relocation list only when restoring a database. Each filename and relocation path is joined by the equal sign (=), and pairs are delimited in the list by commas. The syntax is:

\[
[*][['] file[']=['path[',]]['] file2[']=['path2[',]...["]
\]

For example, to copy a database named *Project* from a client host named *ClientHost1* to a different location on *ClientHost1*, specify the relocation list for the database files, but do not include the client host name command option:

```
nsrqlrc -s NetWorker_server_name  
-d MSSQL:CopyOfProject  
-C Project_Data=C:\Relocation\Path\Project_Data.mdF,
    Project_Data2=C:\Relocation\Path\Project_Data2.mdF,...,
    Project_Log=C:\Relocation\Path\Project_Log.ldF MSSQL:Project
```

The relocation list may be enclosed by double quotes to allow for spaces in the relocation elements and pathnames. A logical filename or relocation path may be enclosed by single quotes to also allow for spaces. If a filename or path contains a single quote, precede the single quote with another single quote to prevent the NetWorker Module for Microsoft SQL Server from parsing the single quote as a delimiter, for example:

```
nsrqlrc -s NetWorker_server_name  
-d MSSQL:CopyOfProject  
-C'"File'=C:\Relocate Dir\Path",  
'="C:\Relocate Dir\Path"',...,  
"=C:\Relocate Dir\Path"' MSSQL:Project
```

When no relocation list is specified, the module reads the source database filenames and location from the client index metadata or the backup. This information is used to generate a default list by relocating all files to the default SQL data path for the target SQL Server. The filenames are guaranteed to be unique, but sufficient disk space is not ensured.

| -d | Performs a copy operation. The copy operation restores SQL Server data from a client host to another database name on the same client host. The syntax is:

```
nsrqlrc -s NetWorker_server_name -C client_name -d MSSQL:destination_dbname MSSQL:source_dbname
```

where:

- **destination_dbName** is the name of the SQL database to which the source database is to be restored.
- **source_dbName** is the name of the SQL database to restore.

Note: When -C, -M, -R, or -d are used, the list of data items can include only one database. The list of data items must follow all other command options and parameters on the command line. “Backup and restore command syntax for SQL Server data” on page 133 provides detailed guidelines on formatting these parameters.

-e	Enables use of an alternate pass phrase with AES encryption when recovering data.
-f	Performs a restore operation by replacing the target database with the source. This option restores a source database to an existing, incompatible database of the same name on the target host. This option is also used to restore damaged files.
-j	Performs a database consistency check between the SQL Server data backup and the restored SQL Server data. “Database consistency check” on page 107 provides more information about this option.
-k	Perform checksum before reading from media.
NetWorker Module Commands

Table 22 Command options for nsrqlrc (page 3 of 6)

<table>
<thead>
<tr>
<th>Command options</th>
<th>Description</th>
</tr>
</thead>
</table>
| **-M** | Performs a SQL Server data restore of the named transaction specified in *log_mark_name* (Microsoft SQL Server 2000 and 2005 only). How the mark name is prefixed, determines how the data will be restored:
 • When the mark name is prefixed with a plus sign (+), the data is restored to and includes the named transaction.
 • When the mark name is prefixed with a minus sign (−), the data is restored up to the named transaction.
 The *log_mark_name* should immediately follow the plus or minus symbol. The use of a space separator is not allowed. The default is the plus sign.
 For example, to restore the SQL data to and include the named transaction *transaction_mark*, enter the following command:
  ```shell	nsrqlrc -s NetWorker_server_name -M +transaction_mark MSSQL:dbName
  ```  
 To restore the SQL data only to the named transaction *transaction_mark*, enter the following command:
  ```shell	nsrqlrc -s NetWorker_server_name -M -transaction_mark MSSQL:dbName
  ```  
 Only one SQL Server database may be specified, and the database must follow all other command options and parameters on the command line. |
| **-P** | Specifies the Microsoft SQL Server user password. When the *-U* username command option is specified, the password command option must also be provided, as follows:
  ```shell	nsrqlrc -s NetWorker_server_name -U username -P password MSSQL:
  ```  
 Use the SQL Server username and password to log onto SQL Server using SQL Server integrated security. |
| **-q** | Displays *nsrqlrc* messages in *quiet mode*, which provides minimal information about the progress of the restore operation, including error messages. |
Using the nsrqlrc command

Table 22 Command options for nsrqlrc (page 4 of 6)

<table>
<thead>
<tr>
<th>Command options</th>
<th>Description</th>
</tr>
</thead>
</table>
| -R | Performs a partial database restore (when using Microsoft SQL Server 2000) or a piecemeal restore of the specified filegroups. This command option is not available with other versions of SQL Server. The partial database restore operation restores specific filegroups from a single full SQL Server database backup. Supply the filegroups to the -R command option in a list, with items separated by commas. The -C parameter may be used, and should specify all files for the database. The -d parameter is also required:
nsrqlrc -s NetWorker_server_name
-R ["\']fgName[\'], ["\']fgName2[\'], ["\']...["\'] ["\']
-C Project_Data=C:\Relocation\Path\Project_Data.mdF,
Project_Data2=C:\Relocation\Path\Project_Data2.ndF,...,
Project_Log=C:\Relocation\Path\Project_Log.ldF MSSQL:Project-d
MSSQL:PartOfProject MSSQL:Project

where:
- Project is the name of the SQL database to restore.
- PartOfProject is the name of the SQL database to which the source database is to be restored.
- fgName,... are the names of the filegroups to restore.

To allow spaces:
- Between the filegroup names for the -R option, enclose the list of filegroup names within double quotes.
- Within filegroup names, enclose each filegroup name within single quotes.

Note: If a filegroup name contains a single quote, precede the single quote with another single quote to prevent the NetWorker software from parsing the single quote as a delimiter.

For example, to accommodate for the space in Filegroup A, the space after the first comma, and the single quote in Filegroup A', use the following syntax:
- R "'Filegroup A', 'Filegroup A''"

When an empty relocation list is supplied, use the following syntax:
- R ""

The module restores only the primary filegroup.

When -C, -M, -R, or -d are used, the list of data objects can include only one database. The list of data objects must follow all other command options and parameters on the command line.

“Backup and restore command syntax for SQL Server data” on page 133 provides detailed guidelines on formatting these parameters.

-s | Specifies the NetWorker server to use for the restore operation.
NetWorker Module Commands

Table 22 Command options for nsrcqlrc (page 5 of 6)

<table>
<thead>
<tr>
<th>Command options</th>
<th>Description</th>
</tr>
</thead>
</table>
| **-S** | Uppercase -S performs the restore operation according to the specified database restore mode of normal, standby, or no recovery. The syntax is:

 `nsrsqlrc -s NetWorker_server_name -d destination_dbName`

 `-S normal | "standby:undo_file" | norecover`

 MSSQL: `source_dbName`

 where:

 - destination_dbName is the name of the SQL database to which the source database is to be restored.
 - source_dbName is the name of the SQL database to restore.

 The restore modes are as follows:

 - The normal restore mode restores the database in normal, operational mode.
 - The standby restore mode activates the SQL Server STANDBY option, which forces the database to be in a read-only state between transaction log restore operations.
 - The no-recovery restore mode activates the SQL Server NORECOVER option, which places the database in an unloadable state after the restore, but still able to process additional transaction log restore operations.

 For example, to restore a database named Project in normal, operational mode to a new database named NewProjectName, enter the following command:

 `nsrsqlrc -s NetWorker_server_name -S normal -d MSSQL:NewProjectName MSSQL:Project`

 To restore the database in standby mode, the `standby` parameter must be immediately followed by a colon, and the standby undo file location and filename must be specified. If a filename or location contains a space, enclose the filename or location within double quotes, for example:

 `nsrsqlsv -s NetWorker_server_name -S "standby:C:\temp\undo filename" -d MSSQL:NewProjectName MSSQL:Project`

 -T | Restores SQL Server data as of the specified date. When the date of a backup version occurs before or is equivalent to the date, the backup version is restored. Follow the nsrc_getdate command syntax guidelines when formatting the date. To avoid adversely affecting the database, do not use the -t option if restoring a file or filegroup.

 -U | Continue the restore even in the event of a checksum error.

 -V | Specifies the Microsoft SQL Server username. When the username command option is specified, the -P password command option must also be provided, for example:

 `nsrsqlrc -s NetWorker_server_name -U username -P password MSSQL:`

 Use the SQL Server username and password to log onto SQL Server by using SQL Server integrated security.

 -V | Verifies the SQL Server database selected for the restore. The -V command option verifies only that the selected database backup is suitable for restoring, the backup is not restored. The syntax is:

 `nsrsqlrc -s NetWorker_server_name -V MSSQL:dbName`
Using the nsrsqlrc command

Sample restore command lines

In an active mirror session, the user interface prevents a piecemeal restore of the principal database to a different location. However, a piecemeal restore can be performed from the command line.

Sample command line for a piecemeal restore of the primary filegroup (MDF & LDF) and filegroup "a" (NDF) of AcmeBank to the new database AcmeOnline:

```
nsrsqlrc
-s "bv-v-cgd2.belred.legato.com"
-c "bv-v-cgd2.belred.legato.com"
-s "MSSQL$THREE:"
-R "PRIMARIA, a"
-R "MSSQL$THREE:AcmeOnline"
-C 'AcmeBank'=E:\Data\AcmeOnline.mdf',
'AcmeBank_log'=E:\Data\AcmeOnline_log.1df',
'AcmeBank1'=E:\Data\AcmeOnline1.ndf'
-t "Wed Sep 14 13:31:46 2005"
"MSSQL$THREE:AcmeBank"
```

Note: The AcmeOnline database name and file locations are different from AcmeBank.
Using the nwmssql command

The nwmssql command invokes the NetWorker User for SQL Server program, the client graphical user interface.

To run the NetWorker User for SQL Server program from the Windows Start menu, select Programs > EMC NetWorker > NetWorker User for SQL Server.

To create a desktop shortcut, go to the <install_path>\sr\bin directory and drag the nwmssql.exe file to your desktop while pressing the [Ctrl] key.

Command options for nwmssql

Table 23 on page 132 lists the nwmssql command options.

nwmssql [-t] -s NetWorker_server_name

<table>
<thead>
<tr>
<th>Command options for nwmssql</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>Specifies the NetWorker server to use.</td>
</tr>
<tr>
<td>-t</td>
<td>Diagnoses the current backup or restore command issued by the module. The NetWorker User for SQL Server program displays the full backup or restore command in the operation status window, but does not execute the backup or restore operation.</td>
</tr>
</tbody>
</table>

“NetWorker User for SQL Server program overview” on page 25 provides more information on the NetWorker User for SQL Server program.
Backup and restore command syntax for SQL Server data

With the standard NetWorker backup and restore commands (\texttt{nsrsqlsv} and \texttt{nsrsqlrc}), use the additional command syntax shown in Table 24 on page 133 to back up or restore SQL Server data.

Enter the NetWorker commands with the SQL Server data syntax for either scheduled or manual backups as follows:

- **Scheduled backup**
 In the NetWorker Administrator program, enter the command in the Backup Command attribute of the Create Client or Edit Client dialog box.

- **Manual backup**
 Enter the command at the Windows command prompt on the NetWorker server.
 At least one SQL Server data item (file, filegroup, or database) must be specified for a manual backup or restore.

You can specify more than one data object and combine different types of data. SQL data objects must be specified by using the syntax shown in Table 24 on page 133.

Table 24 Command syntax for SQL Server data

<table>
<thead>
<tr>
<th>SQL Server data</th>
<th>Syntax for SQL Server data objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>All databases in the SQL Server storage hierarchy (optional)</td>
<td>\texttt{MSSQL:}</td>
</tr>
<tr>
<td>Specified databases</td>
<td>\texttt{MSSQL:dbName}</td>
</tr>
<tr>
<td>All filegroups in specified databases</td>
<td>\texttt{MSSQL:dbName}</td>
</tr>
<tr>
<td>Specified filegroups in specified database</td>
<td>\texttt{MSSQL:dbName.fgName}</td>
</tr>
<tr>
<td>Specified files in specified filegroups in specified databases</td>
<td>\texttt{MSSQL:dbName.fgName.filename}</td>
</tr>
</tbody>
</table>

Specifying \texttt{MSSQL} before each data object name is optional and does not affect the expression or the resulting operation. However, when \texttt{MSSQL} is specified, it must be followed by a colon (:).

For example, the following two commands are equivalent:

\texttt{nsrsqlsv -s NetWorker_server_name dbName.fgName}
\texttt{nsrsqlsv -s NetWorker_server_name MSSQL:dbName.fgName}
In a nonclustered, named instance configuration, `MSSQL$` is required, followed by the instance name and a colon. For example:

```
nsrsqlsv -s NetWorker_server_name
MSSQL$instanceName:dbName.fgName
```

Syntax for a named instance configuration

When the configuration contains nonclustered named instances of SQL Server, the name of the instance should be specified before the data, as follows:

```
MSSQL$instanceName: [dbName ...] [.fgName ...] [.fileName ...]
```

For example, to back up all of the databases for `instanceOne`, enter the following:

```
nsrsqlsv -s NetWorker_server_name MSSQL$instanceOne:
```

To restore several filegroups for `instanceTwo`, specify:

```
nsrqlrc -s NetWorker_server_name
MSSQL$:instanceTwo:dbName.fgName
MSSQL$:instanceTwo:dbName.fgName2
```

Instead of using clustered named instances in this syntax, use clustered instance SQL Server virtual server names with `-a` or `-c` option. For example:

```
nsrsqlsv -s NetWorker_server_name -a SQL_virtual_server_DNS_name
MSSQL:nsrsqlsv -s NetWorker_server_name -c SQL_virtual_server_DNS_name
```

where:

- `NetWorker_server_name` is the hostname of the NetWorker server.
- `SQL_virtual_server_DNS_name` is the Domain Name System (DNS) name for the SQL Server virtual server.

A Client resource should be created under this name.

For scheduled saves of a SQL Server virtual server client, it is not necessary to specify `-a` or `-c` option with the SQL Server virtual server name. The `savegrp` process automatically specifies the virtual server name to the `nsrsqlsv` process by using the `-m` option.

Note: The `nsrsqlsv` and `nsrqlrc` commands only support specification of a single instance. If save sets for more than one instance are specified, the backup fails. The `nsrqlrc` command supports mixing of instances for a copy restore operation. “Multiple nonclustered instances of SQL Server” on page 109 provides more information about running multiple instances of SQL Server.

Syntax for names containing a period, backslash, or colon

The NetWorker Module for Microsoft SQL Server provides command line syntax that enables you to back up and restore filenames, filegroups, and databases containing a period (.), backslash (\), or colon (:). By entering a backslash before the period or backslash, the `nsrsqlsv` and `nsrqlrc` commands interpret the period or backslash as a literal character.
Tables 25 through 28 show the syntax for filenames, filegroups, and databases containing a period, backslash, colon, or any combination of the three.

The following notes apply to the information in the tables:

- The syntax shown in the right column applies to both the `nsrsqlsv` or `nsrsqlrc` commands.
- The notation MSSQL: is optional only for the `nsrsqlsv` command.
- A single period (.) continues to delimit SQL identifiers.
- The syntax also applies to named instances.
- The backslash period (\.) character sequence replaces each literal period in the SQL identifier.
- The double backslash (\\) character sequence replaces each literal backslash in the SQL identifier.

Table 25 Command syntax for names containing a period

<table>
<thead>
<tr>
<th>Name visible from SQL utilities</th>
<th>Equivalent command-line syntax</th>
</tr>
</thead>
</table>
| SQL database named MyDatabase.COM. | MyDatabase\.COM
MSSQL:MyDatabase\.COM
MSSQL$MyInstance:MyDatabase\.COM |
| SQL filegroup named MyFileGroup.2 for the SQL database named MyDatabase.COM. | MyDatabase\.COM.MyFileGroup\.2
MSSQL:MyDatabase\.COM.MyFileGroup\.2
MSSQL$MyInstance:MyDatabase\.COM.MyFileGroup\.2 |
| SQL file named MyFile.2, which is a member of the SQL filegroup named MyFileGroup.2 for the SQL database named MyDatabase.COM. | MyDatabase\.COM.MyFileGroup\.2.MyFile\.2

Table 26 Command syntax for names containing a backslash

<table>
<thead>
<tr>
<th>Name visible from SQL utilities</th>
<th>Equivalent command-line syntax</th>
</tr>
</thead>
</table>
| The SQL database named MyDatabase\COM. | MyDatabase\\COM
MSSQL:MyDatabase\\COM
MSSQL$MyInstance:MyDatabase\\COM |
| The SQL filegroup named MyFileGroup\2 for the SQL database named MyDatabase\COM. | MyDatabase\\COM.MyFileGroup\\2
MSSQL:MyDatabase\\COM.MyFileGroup\\2
MSSQL$MyInstance:MyDatabase\\COM.MyFileGroup\\2 |
| The SQL file named MyFile\2, which is a member of the SQL filegroup named MyFileGroup\2 for the SQL database named MyDatabase\COM. | MyDatabase\\COM.MyFileGroup\\2.MyFile\\2
| The SQL database named MyDatabase\COM. | MyDatabase\\COM
MSSQL:MyDatabase\\COM
MSSQL$MyInstance:MyDatabase\\COM |
Table 27 Command syntax for names containing a colon

<table>
<thead>
<tr>
<th>Name visible from SQL utilities</th>
<th>Equivalent command-line Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL database named MyDatabase:COM.</td>
<td>MyDatabase:COM</td>
</tr>
<tr>
<td></td>
<td>MSSQL:MyDatabase:COM</td>
</tr>
<tr>
<td></td>
<td>MSSQL$MyInstance:MyDatabase:COM</td>
</tr>
<tr>
<td>SQL filegroup named MyFileGroup:2 for the SQL database named</td>
<td>MyDatabase:COM.MyFileGroup:2</td>
</tr>
<tr>
<td></td>
<td>MSSQL$MyInstance:MyDatabase:COM.MyFileGroup:2</td>
</tr>
<tr>
<td>SQL file named MyFile:2, which is a member of the SQL filegroup</td>
<td>MyDatabase:COM.MyFileGroup:2.MyFile:2</td>
</tr>
</tbody>
</table>

Table 28 Command syntax for names containing periods, back slashes, and colons

<table>
<thead>
<tr>
<th>Name visible from SQL utilities</th>
<th>Equivalent command-line syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL filegroup named My\FileGroup\2 for the SQL database named</td>
<td>My:\Database\COM.My\FileGroup\2</td>
</tr>
<tr>
<td>My\Database\COM.</td>
<td>MSSQL: My\Database \COM.My\FileGroup\2</td>
</tr>
<tr>
<td></td>
<td>MSSQL$MyInstance:My\Database\COM.My\FileGroup\2</td>
</tr>
</tbody>
</table>
This appendix describes how the NetWorker Module for Microsoft SQL uses striping to improve backup and recovery performance.

This appendix includes the following main sections:

- Striping with NetWorker Module for Microsoft SQL Server 138
- Striped backups ... 139
- Striped recoveries ... 141
Striping with NetWorker Module for Microsoft SQL Server

NetWorker Module for Microsoft SQL Server supports the use of multiple stripes for backing up and restoring Microsoft SQL Server data. Stripes are one or more streams of data that may be extracted, in parallel, from a database, and written in parallel to multiple media devices, such as tape drives. With this NetWorker Module, striping can yield a significant performance advantage when a large amount of data is backed up and restored by using multiple tape drives.

Note: Although SQL Server supports 64 stripes, this module supports only 32 stripes. This restriction applies to both the NetWorker User for SQL Server program, and the `nsrsqlsv` and `nsrsqlrc` commands.

You can specify striping from one of the following:

- From the **Backup Options** dialog box in the NetWorker User for SQL Server program.
- From the NetWorker Management Console for a scheduled backup.
- From the Windows command prompt on the client host.

Append `-S n` to the `nsrsqlsv` command, for example:

```
nsrsqlsv -s NetWorker_server_name -S3 db_name
```

where `n` is the number of stripes to use.

Note: Use the lowercase `-s` to specify the NetWorker server name and the uppercase `-S` to specify the number of stripes to use. “Using the `nsrsqlsv` command” on page 123 provides more information about using the `nsrsqlsv` command.

Interleaving

Interleaving is the process of writing multiple stripes to the same volume. NetWorker Module for Microsoft SQL Server supports interleaving for backing up multiple clients to a single backup device. Recovering interleaved backups, however, can require substantial restore time. When restoring an entire interleaved backup, one stripe at a time is restored. This requires multiple passes over the same areas on the backup medium. When restoring an interleaved backup, restore each client’s backup separately.
Stripped backups

Before any striped backup begins, the **Parallelism** attribute must be set to at least one more than the number of stripes being used. Set this attribute in the **Set Up Server** dialog box in the NetWorker Management Console. For example, if you use three stripes, specify a value of four or greater for the parallelism.

Performance considerations for striping

For improved backup performance, follow these suggestions:

- In the **Create Device or Edit Device** dialog box in the NetWorker Management Console, configure target sessions for the NetWorker devices that are performing the striped backup.

 Always specify one session per device when you use striping. This yields the best backup performance on the client host by eliminating interleaving.

- Allot a separate backup device (such as a tape drive) for each stripe in the backup or restore operation with the following criteria:

 - Use a different NetWorker server for backup and restore operations not related to SQL Server.

 - Dedicate a storage node exclusively to the striped backups.

- NetWorker Module for Microsoft SQL Server automatically restores data by using the same number of stripes that were specified for the backup.

 For best restore performance, ensure that the same number of devices used for the backup are also available at restore time.

- Configure the computer to run the following:

 - NetWorker Module for Microsoft SQL Server software

 - NetWorker client software

 - SQL Server software as a NetWorker storage node

 Note: The NetWorker server can be running on a different host.

For additional information about backups, see the following:

- Chapter 2, “Manual Backups.”

- Chapter 3, “Scheduled Backups.”

 Note: Chapter 4, “Restoring SQL Server Data,” provides additional information about restoring backups.
Perform a striped backup

NetWorker Module for Microsoft SQL Server supports manual and scheduled backup striping.

To perform a manual striped backup from the SQL Server host, which is a NetWorker client, use one of the following methods:

- From the NetWorker User for SQL Server program:
 a. From the Operation menu, select Backup.
 b. Select an item to back up.
 c. From the Options menu, select Backup Options.
 d. In the Backup Options dialog box, check Create a Striped Backup.
 e. Select the number of stripes from the Stripes list.

- From the Windows command prompt, specify the -S option with the nsrsqlsv command. For example:
 nsrsqlsv -s NetWorker_server_name -Sn db_name
 where n specifies the number of stripes you want to use, for example, -S3.

- From the NetWorker 7.3 or later administration program:
 a. From the Administration window, click Configuration.
 b. In the expanded left pane, click Clients.
 c. In the right pane, right-click the client, and select Properties.
 d. In the Apps & Modules tab of the Properties dialog box, append -Sn to the nsrsqlsv command, where n is the number of stripes to use.
 e. Click OK.
Striped recoveries

The NetWorker Module for Microsoft SQL Server performs striped recovery optimizations so that striped recoveries proceed as quickly as possible. This feature, represents a fundamental change in the striped recovery strategy, and impacts the capability to restore a striped backup under certain situations.

Optimal striped recovery versus fail-safe striped recovery

The NetWorker Module for Microsoft SQL Server assumes a best-case scenario for striped recovery. The worst-case scenario cited in “Performing a fail-safe striped recovery” on page 142 causes the striped recovery to stop responding by default. The restore process is unresponsive because the SQL Server is waiting for the NetWorker server to mount a volume. However, the NetWorker server has no tape sessions available. The module stops responding until the NetWorker server cancels the inactive tape session, which can take as long as 30 minutes.

Table 29 on page 141 provides guidelines for determining when to activate the fail-safe striped recovery algorithm.

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>The backup was interleaved</td>
<td>Use the NetWorker Administrator program to determine if a second mount request has occurred for a volume that is already assigned tape sessions.</td>
</tr>
<tr>
<td>Fewer devices are available</td>
<td>Use the NetWorker Administrator program to determine if a device has been deactivated, or is busy performing an operation for another client.</td>
</tr>
</tbody>
</table>

Performing an optimal striped recovery

In a best-case scenario, striped recovery assumes, by default, that enough NetWorker tape sessions are available to enable the striped recovery to proceed without blocking. The module then assumes the following:

- Each stripe was written to a different volume during backup. Interleaving was not used during the striped backup.
- The same number of devices that are used during backup are available during restore. No device failures have occurred since the backup.
- All devices that are used for backup are currently available. No other client sessions are currently assigned to the devices.

If the configuration does not meet these requirements, see “Performing a fail-safe striped recovery” on page 142.

If the configuration does meet all of these requirements, then the module optimally restores the striped recovery. Backup data is delivered to the SQL Server as soon as each tape session is established. This method provides the highest performance and lowest restore time.

Earlier releases of this module permitted a striped recovery even if one or more of the requirements were not met. The module was required to load each volume that contained a stripe member before sending any backup data to the SQL Server. This method increased the restore time.
Performing a fail-safe striped recovery

If a striped backup is interleaved, or if fewer tape sessions are available at restore time (because of a failed or busy device), then a fail-safe striped recovery is necessary.

The NetWorker Module for Microsoft SQL Server determines the number of tape sessions available before starting striped recovery by contacting the NetWorker server with a list of striped save sets. If the number of tape sessions is smaller than the number of striped save sets, the module uses a fail-safe striped recovery algorithm. The algorithm selected depends on the SQL Server version.

Note: For SQL Server 2000, the fail-safe algorithm might impact striped recovery.

Fail-safe striped recovery

When enabling a fail-safe striped recovery to restore a SQL Server client, additional configuration settings are recommended to enable the restore to proceed at maximum throughput.

The NetWorker Module for Microsoft SQL Server takes advantage of the SQL Server VDI feature called *removable pipes*. This feature allows third-party backup vendors to restore a striped backup from fewer devices. However, there is currently no way for this module to accurately determine how many tape sessions the NetWorker server can assign. The NetWorker server does *not* support striped recoveries by default. Therefore, only *one* tape session is available to restore the striped save sets during the predetection phase.

Because of the way SQL Server VDI removable pipes function, the third-party backup vendor can start only as many stripe restore threads as there are tape sessions available. Otherwise, the restore stops responding.

Because of the removable pipes requirements and the NetWorker server limitation, the NetWorker Module, by default, restores one stripe save set at a time for SQL Server when the **Detect Available Tape Sessions Prior to Restoring a Striped Backup** option is enabled. Therefore, if data was backed up with two stripes, the restore operation takes twice as long. You can, however, temporarily enable striped recoveries on the NetWorker server to achieve maximum performance during a restore operation of SQL Server striped backups.

Note: Because enabling striped recoveries on the NetWorker server may cause the file system restores to fail, do not use this recovery method as a permanent solution.

Perform a fail-safe striped recovery

The following procedure applies to normal, copy, verify-only, and partial (SQL Server 2000) or piecemeal restore types.

To enable a fail-safe striped recovery:

1. In the Restore window of the NetWorker User for SQL Server program, mark the root item in the left pane.
2. From the **Options** menu, select **Restore Options**.
3. Select the **Detect available tape sessions prior to restoring a striped backup** attribute.
4. (Optional) Enable striped recoveries on the NetWorker server by creating the file `striped_recovery` in the `\nsr\debug` directory on the NetWorker server.

 Note: You do not need to restart the NetWorker services to activate this setting.

5. Start the recovery from the NetWorker User for SQL Server program or from the command line.

6. If the volumes with the striped recovery are not managed by an autochanger, then monitor events in the NetWorker Administrator program.

 When a media wait event occurs, load the appropriate volume.

7. Once the recovery is complete, clear the checkbox for the Detect Available Tape Sessions Prior to Restoring a Striped Backup attribute in the NetWorker User for SQL Server program.

 Because this setting is maintained in the Windows registry, disabling the option allows the next striped recovery to proceed at maximum performance.

8. Once the recovery is complete, disable striped recovers on the NetWorker server by deleting the file `striped_recovery` in the `\nsr\debug` directory on the NetWorker server.

Windows registry entry for striped backup

The installation program for the NetWorker Module for Microsoft SQL Server sets a Windows registry entry. This entry enables the Detect Available Tape Sessions option in the Restore Options dialog. By default, the entry is set to enabled. To change the default setting, select or clear the Detect Available Tape Sessions Prior to Restoring a Striped Backup attribute in the Restore Options dialog box. The current setting persists from session to session.

You can also use `regedit` to change the default setting; modify the NSR_DETECT_TAPES entry in the following registry path:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Legato\BSMSQL\Environment
```
This glossary contains terms related to the NetWorker Module for Microsoft SQL Server. Many of these terms are used in this manual.

A

administrator The person normally responsible for installing, configuring, and maintaining NetWorker software.

Administrators group A Microsoft Windows user group whose members have all the rights and abilities of users in other groups, plus the ability to create and manage all the users and groups in the domain. Only members of the Administrators group can modify operating system files, maintain the built-in groups, and grant additional rights to groups.

Application Specific Module (ASM) A program that, when used in a directive, specifies the way a set of files or directories is to be backed up and recovered. For example, compress asm is a NetWorker directive used to compress files.

archive volume A tape or other storage medium used for NetWorker archives, as opposed to a backup volume.

autochanger A mechanism that uses a robotic arm to move media among various components located in a device, including slots, media drives, media access ports, and transports. Autochangers automate media loading and mounting functions during backup and recovery.

B

backup group See “group.”

backup level See “level (1-9).”

Backup Operators group A group of Microsoft Windows users who can log on to a domain from a computer or a server, and back up and restore its data. Backup operators also can shut down servers or computers.

backup volume See “volume.”

bootstrap A save set that is essential for the NetWorker disaster recovery procedures. The bootstrap is composed of three components that reside on the NetWorker server: the media database, the resource database, and a server index.

BRC (Backup Recorder Control) API The application programming interface through which the NetWorker Module communicates with the “BRC service” to perform snapshot operations.
Glossary

BRC service Backup Recover Control service, the EMC PowerSnap service that provides snapshot backup and recover functionality to NetWorker application modules, such as the NetWorker Module for Microsoft SQL Server. See also “PowerSnap Module.”

browse policy A NetWorker policy that determines how long entries for backed up data remain in the client file index.

browse time A feature of the NetWorker User for SQL Server program that allows you to select the date and time of the backup save sets that are displayed in the Restore window, so you can restore data from previous backups. By default, the browse time is the current date and time.

C

checksum When enabled, SQL Server computes the checksum of a database page both when it is written and when it is read. This value and any differences can help determine if a page is corrupt. If the checksum value matches, it is assumed that the page was not corrupted during a write-read cycle.

copy restore Create a copy of a database by restoring a SQL Server 7.0 or later database backup to a new location or to a new database name. The copy restore type replaces the directed recovery operation, which existed in versions of the NetWorker Module before release 3.0.

D

data mover The client system or application, such as NetWorker, that moves the data during a backup, recovery, or “snapshot” operation.

database consistency check (DBCC) A SQL Server function that checks the allocation and structural integrity of all the objects in the specified database.

database mirroring A SQL Server 2005 or later feature that continuously sends a database’s transaction log records to a copy of the database on another standby SQL Server instance. The originating database and server have the role of principal, and the receiving database and server have the role of mirror.

default instance In a Microsoft SQL Server 2000 multiple instance configuration, the first installation
of SQL Server on a computer is called the **default instance**. The name of the default instance is the network name for the local computer.

device
1. A storage unit that reads from and writes to storage volumes (see volume). A storage unit can be a tape device, optical drive, autochanger, or file connected to the server or storage node.
2. When dynamic drive sharing (DDS) is enabled, refers to the access path to the physical drive.

differential
A backup level that corresponds to a NetWorker Module level (1-9) backup. All of the pages in a database that were modified after the last database backup are saved.

directed recovery
See “copy restore.”

directive
An instruction directing the NetWorker software to take special actions on a given set of files for a specified client during a backup.

enabler code
A special code provided by EMC that activates the software. The enabler code that unlocks the base features for software you purchase is referred to as a base enabler. Enabler codes for additional features or products (for example, autochanger support) are referred to as add-on enablers.

fake objects
Data items contained in the storage hierarchy that are not available for backup. To be able to browse the filegroups and files contained in a database, the NetWorker User for SQL Server program may display these fake objects.

file index
See “client file index.”

file-logical image recovery (FLIR)
A recovery in two steps: the file tree is created with file preallocation by using the application host's operating system to gather data block information; then, the data mover copies the backup from NetWorker media directly to the preallocated blocks on the application host's disks without using an array-based copy technology or passing the data through the application host.

fileserver
A computer with disks that provides services to other computers on the network.

file system
1. A file tree on a specific disk partition or other mount point.
2. The entire set of all files.

filestream
A SQL Server 2008 feature that allows structured data to be stored in the database and associated unstructured (BLOB) data to be stored directly in the NTFS file system. Filestream is a storage attribute of the existing varbinary (max) data type.

full (f)
A backup level that corresponds to a Microsoft SQL Server database backup. The entire database is saved, which includes both data files and transaction log files.
G

group A client or group of clients configured to start backing up files to the NetWorker server at a designated time of day.

H

heterogeneous networks Networks with systems of different platforms that interact meaningfully across the network.

I

incremental (i) A backup level that corresponds to a Microsoft SQL Server transaction log backup. Only the log file is saved.

instance A copy of SQL Server running on a computer. A computer can run multiple instances of SQL Server 2000. A computer can run only one instance of SQL Server version 7.0 or earlier, although in some cases it may also be running multiple instances of SQL Server 2000.

instant backup The process of creating a point-in-time copy (“snapshot”) of data and saving it on “primary storage.” The NetWorker Module supports instant backups of SQL Server databases.

instant restore The process of copying data created during an “instant backup” back to its original location on the SQL Server during a recover operation. The NetWorker Module supports instant restores of SQL Server databases.

interoperability The ability of software and hardware on multiple computers from multiple vendors to communicate meaningfully.

L

level (1-9) A backup level that corresponds to a Microsoft SQL Server differential backup. All of the pages in a database that were modified after the last database backup are saved.

log mark See “named log marks.”

logical objects save set A metadata saveset that contains additional information on the internal structure of the database being backed up. These save sets are always type incremental and are considerably smaller that a typical database save set.

M

manual backup An unscheduled backup of SQL Server data, performed either with the NetWorker User for SQL Server program, or by running nssq1sv at the command prompt.

master database The SQL Server master database contains information about all SQL Server databases on the SQL Server host.

media Magnetic tape or optical disks used to back up files.

media database A database that contains indexed entries about the storage volume location and the life cycle status of all data and volumes the NetWorker server manages.

media index See “media database.”
media manager The NetWorker component that tracks the location status and purpose of storage media.

Microsoft Cluster Server (MSCS) A Microsoft Windows server feature that supports the connection of multiple servers into a "cluster" for higher availability of data and applications.

multiple instance Microsoft SQL Server 2000 feature that allows multiple copies of SQL Server to run on a single computer.

named instance An installation of SQL Server 2000 that is given a name to differentiate it from other named instances and from the default instance on the same computer. A named instance is identified by the computer name and instance name.

named log marks Named log marks are created by database applications when transactions are performed. The marks enable access to specific transaction points in a database transaction log backup.

NetWorker An EMC network-based software product for backing up and recovering file systems.

NetWorker client A computer that has the NetWorker client software installed and can access the backup and recover services from a NetWorker server.

NetWorker resource A component of the NetWorker software that controls the functionality of the NetWorker server and its clients. Examples of NetWorker resources include devices, schedules, clients, groups, and policies. Each resource consists of a list of attributes that defines the resource’s specific parameters.

NetWorker server The computer on a network running the NetWorker software, containing the online indexes, and providing backup and recovery services to the clients on the same network.

NetWorker storage node A storage device physically attached to another computer whose backup operations are administered from the controlling NetWorker server.

NetWorker User for SQL Server The graphical user interface for the NetWorker Module for Microsoft SQL Server software. From this interface you can initiate manual backups as well as recoveries.

no recovery Equivalent to the SQL Server NORECOVER option, which places a database in an unloadable state after a restore, but enables the database to process additional transaction log restore operations.

nonpersistent snapshot A snapshot backup that is moved to secondary storage on the NetWorker server or storage node and is no longer available for "instant restore" from a supported type of "primary storage."

normal restore type A SQL Server restore that recovers the entire set of data associated with one or more SQL Server backups, including full, incremental, and differential backups. The normal restore type recovers a file, filegroup, or a database to the database originally backed up.

notice A response to a NetWorker event.

nsrhost The logical hostname of the computer that is the NetWorker server.
Glossary

nsrsqlrc The NetWorker Module command used to browse the SQL Server storage hierarchy and to restore files from a backup version.

nsrsqlsv The NetWorker Module command used to browse the SQL Server storage hierarchy and to backup data objects, which consist of databases, filegroups, and files.

nwmssql The NetWorker Module command used to invoke the NetWorker User for SQL Server program.

online indexes The databases located on the NetWorker server that contain all the information pertaining to the client backups (“client file index”) and backup volumes (“media”).

online restore For SQL Server 2005 and later, the restore of backup data while the database is online. File restores and page restores are automatically online restores and, also, restores of secondary filegroup after the initial stage of a “piecemeal restore.”

operator The person who monitors the server status, loads backup volumes into the server devices, and otherwise executes the day-to-day NetWorker tasks.

override A NetWorker feature that allows you to configure a different backup level for a specific date listed in a Schedule resource.

partial restore Only restore a portion of the filegroups and/or files associated with a single SQL Server 2000 database backup (Microsoft SQL Server 2000 only). When a partial database restore is performed, the primary filegroup and associated files are always restored. The primary filegroup contains information necessary for restoring the database to the proper structure.

pathname A set of instructions to the operating system for accessing a file. An absolute pathname indicates how to find a file starting from the root directory and working down the directory tree. A relative pathname indicates how to find a file starting from the current location.

persistent snapshot A snapshot that is retained on disk. A persistent snapshot may or may not be rolled over to tape.

piecemeal restore Allows filegroups to be restored after an initial, partial restore of the primary and some of the secondary filegroups. Filegroups that are not restored are marked as offline and are not accessible. The offline filegroups, however, can be restored later by a file restore. To allow the entire database to be restored in stages at different times, piecemeal restore maintain checks to ensure that the database will be consistent in the end. Piecemeal restore replaced “partial restore” with the release of SQL Server 2005.

point-in-time Restore SQL Server data to a specific point in time, such as a named log mark or transaction time within a backup version.

pool A feature that enables you to sort backup data to selected volumes. A pool contains a collection of backup volumes to which specific data has been backed up.

PowerSnap Module A software module that exports services of a storage subsystem by interfacing with vendor specific APIs. This module is independent of applications and backup and recover interfaces.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary filegroup</td>
<td>The SQL Server primary filegroup contains information necessary for restoring a database to the proper structure. When a partial database restore is performed, the primary filegroup and associated files are always restored.</td>
</tr>
<tr>
<td>primary storage</td>
<td>A SQL Server storage subsystem that contains SQL data and any persistent snapshot backups of the data.</td>
</tr>
<tr>
<td>promotion</td>
<td>When the server performs a backup at a higher level than originally requested. For example, the server performs a level full backup when a level differential backup was requested.</td>
</tr>
<tr>
<td>proxy client</td>
<td>A surrogate client that performs the NetWorker save operation for the client that requested the backup.</td>
</tr>
<tr>
<td>recovery model</td>
<td>The Microsoft SQL Server 2000 recovery model represents the trade-offs made when deciding which databases to back up and how often, and the impact back up and restore time have on system performance. Recovery models include: full, bulk_logged, and simple.</td>
</tr>
<tr>
<td>recycle-able volume</td>
<td>A volume whose data has passed both its browse and retention policies and is available for relabeling.</td>
</tr>
<tr>
<td>Registry</td>
<td>A database of configuration information central to Microsoft Windows operations. It contains all Windows settings and provides security and control over system, security, and user account settings.</td>
</tr>
<tr>
<td>relocation list</td>
<td>The relocation list is used during a normal or copy restore type operation to specify where to locate the restored files. The list is composed of pairs of logical database filenames and fully qualified domain database filename relocation paths.</td>
</tr>
<tr>
<td>relocation path</td>
<td>See “relocation list.”</td>
</tr>
<tr>
<td>restore</td>
<td>The process of retrieving individual data files from backup storage and copying to disk.</td>
</tr>
<tr>
<td>restore mode</td>
<td>The restore mode instructs the NetWorker Module on how to interact with a database after a restore operation has completed. Restore modes correspond to SQL Server database restore options and include: normal, no recovery, and standby.</td>
</tr>
<tr>
<td>restore time</td>
<td>The restore time controls which backup data should be reinstated when a database is restored; may also control which portions of a level incremental backup are to be restored, when you inform the NetWorker Module to discard transactions performed after a given time.</td>
</tr>
<tr>
<td>restore type</td>
<td>The restore type is based on the level and type of backup created, as well as the set of data needed to restore from a backup. The restore type must be specified before browsing and selecting objects to restore. Restore types include normal, copy, partial, and verify only.</td>
</tr>
<tr>
<td>retention policy</td>
<td>A NetWorker policy that determines how long entries are retained in the media database.</td>
</tr>
</tbody>
</table>
Glossary

rollback restore The process by which a specific point-in-time copy (snapshot) of data is restored to the source location by using the hardware’s specific capabilities. A rollback restore is a destructive save set restore.

root item The top level data object in a SQL Server storage hierarchy.

S

save The NetWorker command that backs up client files to back up volumes and makes data entries in the online index. See also “nsrsqlsv.”

save set A set of files or a file system backed up onto storage media using the NetWorker software.

save set ID An internal identification number that NetWorker software assigns to a save set.

scanner The NetWorker command used to read a backup volume when the online indexes are no longer available.

scheduled backup A type of backup that is configured to start automatically at a specified time for a group of one or more NetWorker clients. Scheduled backups are configured using either the NetWorker Configuration Wizard, or the NetWorker Administrator program on the NetWorker server.

secondary filegroup A secondary file group is all of the data files, other than the primary data file. Some databases may not have any secondary data files, while others have several secondary data files.

secondary storage A storage library attached to the NetWorker server or storage node, used to store traditional or snapshot backups. A NetWorker server Device resource must be configured for each secondary storage device. See also “primary storage.”

serverless backup A backup method that employs a “proxy client” to move the data from primary storage on the application server host computer to secondary storage.

snapshot A point-in-time copy of a SQL Server database created on a supported type of “primary storage” during an instant backup.

snapshot expiration policy The policy that determines how long point-in-time copies are retained before they are used for creating a different PiT copy.

snapshot policy A NetWorker server snapshot Policy resource controls the lifecycle of snapshot backups. The snapshot policy specifies the frequency of snapshot backups, and how long snapshots are retained before being recycled.

snapshot retention policy The policy that determines how many point-in-time copies are retained in the media database and thus are recoverable.

stand-alone device A storage device that contains a single drive for backing up data. Stand-alone devices cannot store or automatically load backup volumes.

standby Equivalent to the SQL Server STANDBY option, which forces a database to be in a read-only state between transaction log restore operations.

stripes One or more streams of data that may be extracted in parallel from a database, and written in parallel to multiple media devices, such as tape drives.
sysadmin System administrator account, or system account, one having full privileges.

T

ditional backup A NetWorker Module backup operation that uses the NetWorker “XBSA” API. These operations are referred to as “traditional” because this method has been in use since the NetWorker Module was first released.

ditional restore A NetWorker Module restore operation that use the NetWorker “XBSA” API. These operations are referred to as “traditional” because this method has been in use since the NetWorker Module was first released.

transaction log A SQL Server transaction log contains named transactions or listings of changed files of a SQL Server database. Transaction logs can be truncated prior to a full database backup or backed up separately by performing an incremental level backup.

Transparent Data Encryption (TDE) A SQL Server 2008 feature that performs real-time I/O encryption and decryption of the data and log files. TDE uses a database encryption key (DEK), which is stored in the database boot record for availability during recovery. Encryption of the database file is performed at the page level. The pages in an encrypted database are encrypted before they are written to disk and decrypted when read into memory. When using this feature, make sure that the certificate and private key are backed up with the encrypted data.

truncate Equivalent to the SQL Server TRUNCATE_ONLY option, which causes the transaction log files to be truncated before creating a backup.

V

verify-only restore Only verifies the backup media for the selected SQL Server 7.0 or later backups. Selecting the verify-only restore type does not restore any SQL Server data. In addition, when verify-only is specified, item-level properties for database, filegroup, and file objects are not available.

virtual server In a Microsoft Cluster Server configuration, SQL Servers appear as a set of two nodes and virtual servers. Each node is a physical computer with its own IP address and network name, and the virtual servers have their own IP addresses and network names. Each virtual server also owns a subset of shared cluster disks and is responsible for starting cluster applications that can fail over from one cluster node to another.

volume A unit of storage media, such as a magnetic tape, an optical disk, or a file. A storage device reads from and writes to volumes, which can be physical units (for example, a labeled tape cartridge) or logical units (for example, optical media can store multiple volumes on a single physical platter).

volume ID The internal identification NetWorker software assigns to a backup volume

volume name The name assigned to a backup volume when it is labeled.

X

XBSA Acronym for X/Open Backup Services Application Programming Interface, which connects NetWorker functionality to the NetWorker Module.

xlog See “transaction log.”
A
action attribute 46
AES encryption
backup 34
restore 64
aliases attribute 45

B
backup
AES encryption 34
backup device 35
canceling 36
functions supported for SQL Server 102
group 43
in a cluster 97
levels
comparison 40
levels, defined 18
levels, SQL Server terminology 18
manual 18
Microsoft Cluster Server data 91
monitoring 36
options
volume pools 34
parallelism 139
performance 138
process overview, traditional 15
properties 34
required time 36
restrictions 134
sample snapshot policy 42
scheduled 18, 152
starting 36
striping 140
types supported for SQL Server 2000 101
backup options 33
backup status window 36
binary disk crash 116
BRC (Backup Recover Control) 17, 20
browse policy 43, 44
browse policy attribute 44
browse time, changing 73
bulk_logged recovery model 100

C
canceling a backup 36
canceling a restore 87
cluster virtual server 92
clustered SQL Server
performing unscheduled operations on 97
conventional backup 17
create time 24

data mover 18, 20, 66, 69
database file relocation restrictions 54
DBCC (database consistency check) 107
default group 43
default instance 109
default schedule 45
destructive restores
overview 23
disaster recovery
basic instructions 116
features 114
Rebuild Master utility 116 to 118
restore NetWorker binaries and online indexes 117
SQL Server 119
display conventions 26
distribution database 117

e
crc
encryption (TDE) 13
ERRORLOG file 50

F
failover cluster support 91
fail-safe recovery 142
fake objects 25
filegroups
backing up and restoring 55, 79
specifying for restore 80
files
backing up and restoring 55, 79
filestream data 14, 26, 27, 50
full recovery model 100
Index

G
 group attribute 44

H
 homogenous storage platforms 13

I
 instant backup 16
 instant restore 20
 interleaving 138

L
 LAN and LAN-free environments 13
 legacy database options
 select into/bulk copy 101
 trunc.log.on.chkpt 101
 logger (UNIX command) 46

M
 marking items
 indicators 26
 partially 26
 restrictions 27, 33
 semantics 26
 MSCS (Microsoft Cluster Server)
 active/active cluster configurations 92
 active/passive cluster configurations 92
 failover support 91
 multiple instance 91
 named instances 91
 nodes supported 90
 virtual server 90, 91, 92
 MSSQL save set 133
 multiple nonclustered instance 109

N
 named instances 91, 109, 134
 named log mark
 defined 104
 option 62, 85
 NetWorker
 client file index 44
 debug directory 143
 media database 44
 NetWorker Remote Exec Service 50
 NetWorker Administrator program
 configuring backup groups 43
 display hidden attributes 42
 NetWorker client 43
 NetWorker Module, interaction with 111
 NetWorker User for SQL Server
 26
 Backup Status window 36
 display conventions 26
 fake objects 25
 marking items partially 26
 marking items restrictions 27, 33
 nwmssql command 122
 striped restore 143
 nonpersistent snapshot 17
 NORECOVERY option 23, 54, 58
 nsm
 role during backup 19
 nsrlog command 46
 nsrmm
 functionality during recover 19
 nsrsql
 command 97, 109, 122
 command options 126
 nsrsqsv
 command 44, 95, 109, 122, 138
 command options 123
 nwmssql
 command 122
 command options 132

O
 on-demand backup 30

P
 parallelism 139
 partially marking items 26
 password attribute 45
 piecemeal restore 51
 point-in-time 16
 point-in-time backup 62
 PowerSnap Module
 Backup Recover Control service 17
 BRC (Backup Recover Control) 17, 20
 PowerSnap Modules. See also snapshot 13
 primary data disk crash 116
 proxy client 17
 proxy client. See data mover

R
 Read File Configuration properties, specifying 83
 Rebuild Master utility 117
 rebuildm command 116, 117, 118
 recovery model
 bulk_logged 100
 changing 102, 103
 full 100
 simple 100
 specifying 101
 reducing network traffic 43
 reducing network traffic
 restore
 alternate pass phrase 64
 backup levels 40
 canceling 87
 change browse time 73
 database file relocation restrictions 54
 distribution database 117
 ERRORLOG file 50
Index

file destination 82
functions supported for SQL Server 102
in a cluster 97
master database 112, 117
model database 117
msdb database 112, 117
NetWorker binaries and online indexes 117
options 66, 142
overwrite database 55, 88
overwriting existing database 59, 81, 114
point-in-time 24
properties 75
required time 55, 87
restrictions 134
snapshot 19
snapshot methods 65
SQL cluster resources 111
status window 87
striped restore 142
traditional recovery 19
transaction log backups 54
uncommitted transactions 54
using NetWorker User for SQL Server 55
viewing required volumes 74
wrong volume problem 55, 88

restore mode
no recovery 23, 58
normal 23, 58
standby 23

restore time 24
database backup versions 24
named log marks 104
point-in-time 24

restore type
copy 22, 67
normal 21
partial 21
verify only 22

retention policy 43, 44
Retention Policy attribute 44

S
save sets 44

savgrp
functionality 15
schedule attribute 44

scheduled backup
backup strategies 39
creating backup groups 43
default group 43
defined 152
levels 39, 40
MSSQL save set 133
NetWorker client 43
nsrlog command 46
requirements for Microsoft Cluster Server 93
schedule 45
writing to log file 46

select into/bulk copy 101
serverless backup 17
simple recovery model 100
snapshot
backing up Microsoft cluster 96
backup 15
data mover 18, 20, 66, 69
homogeneous storage platforms 13
instant backup 16
LAN and LAN-free environments 13
restore 19, 20
serverless backup 17
snapshot recovery operation 20
SQL Server
backup and restore functions supported 102
binary disk crash 116
data syntax 133
DBCC (database consistency check) 107
default instance 109
disaster recovery 119
distribution database 117
Enterprise Manager 107
instance 91
master database maintenance 107
model database 117
msdb database 117
named instances 109
NORECOVERY option 54
primary data disk crash 116
Rebuild Master utility 116 to 118
services
NetWorker Module interaction 111
production mode 111
single-user mode 111, 112
virtual server 91, 92
SQL Server 2000
default instance 109
differential filegroup and file backups 14
fail-safe striped recovery 142
multiple nonclustered instance 109, 134
removable pipes 142
running multiple nonclustered instances 109
SQL Server encryption 13
SQL Server master database maintenance 107
STANDBY option 23
storage node attribute 107

striped backup
interleaved 142
interleaving 138
manual 140
parallelism 139
performance considerations 139

striped restore 142
fail-safe striped recovery 141
interleaving 138
optimizations 141
striped_recovery file 143

stripes
defined 138
fail-safe recovery on Microsoft SQL Server 2000 142
performing striped backup 140
performing striped recovery 142
performing striped recovery, optimal 141
specifying a value 139

syntax
database, filegroup, and filename containing periods
134

T
traditional backup 14
traditional recovery 19
transaction log
 backup 24
 maintenance 104
 overflow prevention 104
transaction log backup 54
transparent data encryption (TDE) 13
trunc.log.on.chkpt 101

U
unmarking items
 indicators 26
user access control 12

V
virtual server 90, 91, 92, 126
volume pools 34, 46