<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backups over SMB 3.0</td>
<td>43</td>
</tr>
<tr>
<td>Differencing disks</td>
<td>43</td>
</tr>
<tr>
<td>Hyper-V virtual machine checkpoints</td>
<td>43</td>
</tr>
<tr>
<td>Configuring backups</td>
<td>44</td>
</tr>
<tr>
<td>Performing cluster-level and CSV virtual machine backups</td>
<td>45</td>
</tr>
<tr>
<td>Performing a CSV-level federated backup</td>
<td>45</td>
</tr>
<tr>
<td>Performing a CSV virtual machine backup</td>
<td>45</td>
</tr>
<tr>
<td>Configuring multi-proxy backups</td>
<td>46</td>
</tr>
<tr>
<td>Configuring multi-proxy backups in an SMB configuration</td>
<td>48</td>
</tr>
<tr>
<td>Best practices for configuring multi-proxy backups</td>
<td>48</td>
</tr>
<tr>
<td>Configuring a client resource by using the Client Configuration Wizard</td>
<td>49</td>
</tr>
<tr>
<td>Configuring a client resource manually by using the NetWorker Management Console</td>
<td>52</td>
</tr>
<tr>
<td>Editing a client resource that was created by using an NMM 8.2.x or earlier release</td>
<td>55</td>
</tr>
</tbody>
</table>

Chapter 3: Recoveries

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>58</td>
</tr>
<tr>
<td>Turning the virtual machine offline for recovery</td>
<td>58</td>
</tr>
<tr>
<td>Hosting the recovered virtual systems</td>
<td>58</td>
</tr>
<tr>
<td>Specifying the destinations for the Hyper-V configuration files and virtual system</td>
<td>59</td>
</tr>
<tr>
<td>Selecting the Hyper-V recovery destination</td>
<td>60</td>
</tr>
<tr>
<td>Performing Hyper-V recovery to the original machine and location</td>
<td>60</td>
</tr>
<tr>
<td>Performing a directed Hyper-V recovery to a different machine or location</td>
<td>61</td>
</tr>
<tr>
<td>Recovering Hyper-V CSV virtual machines</td>
<td>63</td>
</tr>
<tr>
<td>SMB 3.0 virtual machine recovery</td>
<td>63</td>
</tr>
<tr>
<td>CSV virtual machine recovery</td>
<td>63</td>
</tr>
<tr>
<td>Recovering with a Windows Server 2012 and 2012 R2 proxy CSV server</td>
<td>64</td>
</tr>
<tr>
<td>Recovering multiple CSV VMs to the original location</td>
<td>65</td>
</tr>
<tr>
<td>Recovering an individual CSV Hyper-V virtual machine to a different location</td>
<td>65</td>
</tr>
</tbody>
</table>

Chapter 4: Granular Level Recoveries

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>68</td>
</tr>
<tr>
<td>Recovering Hyper-V files and folders</td>
<td>68</td>
</tr>
</tbody>
</table>

Chapter 5: File Level Recoveries

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>Required ports for Hyper-V File Level Restore GUI</td>
<td>72</td>
</tr>
<tr>
<td>Performing a browser-based file level restore</td>
<td>72</td>
</tr>
<tr>
<td>Performing a directed file level restore</td>
<td>74</td>
</tr>
<tr>
<td>Monitoring file level restores</td>
<td>75</td>
</tr>
<tr>
<td>Hyper-V FLR web UI log files</td>
<td>75</td>
</tr>
</tbody>
</table>

Chapter 6: EMC Data Protection Add-in for SCVMM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>78</td>
</tr>
<tr>
<td>Recoveries</td>
<td>78</td>
</tr>
<tr>
<td>Backups</td>
<td>78</td>
</tr>
</tbody>
</table>
Chapter 8 Troubleshooting 111
Troubleshooting backups... 112
Troubleshooting recovery.. 113

Appendix A Recovering SQL Server, Exchange Server, and SharePoint Server Items from a Hyper-V VM 115
Overview... 116
Recovering items.. 116
 Recovering SQL Server items.. 117
 Recovering Exchange Server items... 118
 Recovering SharePoint Server items... 119
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest backup and recovery environment</td>
<td>17</td>
</tr>
<tr>
<td>Image-level backup and recovery environment</td>
<td>18</td>
</tr>
<tr>
<td>Two-node Hyper-V failover cluster</td>
<td>20</td>
</tr>
<tr>
<td>Image-level backups in a Windows Server cluster with SMB</td>
<td>22</td>
</tr>
<tr>
<td>Granular level recovery environment</td>
<td>23</td>
</tr>
<tr>
<td>Windows Server 2012 host with Hyper-V virtual machines</td>
<td>26</td>
</tr>
<tr>
<td>NMM backup of Hyper-V components</td>
<td>27</td>
</tr>
<tr>
<td>Hyper-V storage options</td>
<td>28</td>
</tr>
<tr>
<td>Image-level VSS backup workflow</td>
<td>33</td>
</tr>
<tr>
<td>Image-level saved state backup workflow</td>
<td>35</td>
</tr>
<tr>
<td>Image-level backup workflow for federated backups</td>
<td>36</td>
</tr>
<tr>
<td>Data Protection Add-in architecture</td>
<td>80</td>
</tr>
<tr>
<td>Data Protection Add-in for SCVMM Preferences page</td>
<td>88</td>
</tr>
<tr>
<td>Data Protection Add-in Overview page for Administrator, Fabric Administrator, and Read-Only Administrator user roles</td>
<td>91</td>
</tr>
<tr>
<td>Virtual machine Protection Details tooltip for Administrator, Fabric Administrator, and Read-Only Administrator user roles</td>
<td>91</td>
</tr>
<tr>
<td>Virtual machine Protection Details window for Administrator, Fabric Administrator, and Read-Only Administrator user roles</td>
<td>91</td>
</tr>
<tr>
<td>Data Protection Add-in Overview page for Tenant Administrator and Application Administrator user roles</td>
<td>92</td>
</tr>
<tr>
<td>Virtual Machine Backup Status tooltip for Tenant Administrator and Application Administrator user roles</td>
<td>93</td>
</tr>
<tr>
<td>Virtual machine Protection Details window for Tenant Administrator and Application Administrator user roles</td>
<td>94</td>
</tr>
<tr>
<td>Data Protection Add-in for SCVMM Recover page</td>
<td>95</td>
</tr>
<tr>
<td>Data Protection Add-in for SCVMM Monitoring page</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Revision history</td>
</tr>
<tr>
<td>2</td>
<td>Style conventions</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of guest and image-level backup and recovery</td>
</tr>
<tr>
<td>4</td>
<td>Access privileges needed for backup and recovery</td>
</tr>
<tr>
<td>5</td>
<td>Hyper-V virtual machine configurations</td>
</tr>
<tr>
<td>6</td>
<td>NMM image-level backup types</td>
</tr>
<tr>
<td>7</td>
<td>Virtual machine files supported by the VSS Hyper-V Writer</td>
</tr>
<tr>
<td>8</td>
<td>Types of supported recoveries</td>
</tr>
<tr>
<td>9</td>
<td>Common special characters and their URL-encoded values</td>
</tr>
<tr>
<td>10</td>
<td>Backup tasks for Hyper-V</td>
</tr>
<tr>
<td>11</td>
<td>Hyper-V save set syntax</td>
</tr>
<tr>
<td>12</td>
<td>Hyper-V application information variable settings</td>
</tr>
<tr>
<td>13</td>
<td>SCVMM user roles and actions allowed by the Data Protection Add-in</td>
</tr>
<tr>
<td>14</td>
<td>Virtual machine IDs after redirected recovery</td>
</tr>
<tr>
<td>15</td>
<td>Backup types</td>
</tr>
</tbody>
</table>
As part of an effort to improve its product lines, EMC periodically releases revisions of its software and hardware. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information on product features.

Contact your EMC technical support professional if a product does not function correctly or does not function as described in this document.

Note
This document was accurate at publication time. Go to EMC Online Support (https://support.emc.com) to ensure that you are using the latest version of this document.

Purpose
This guide contains information about using the NetWorker Module for Microsoft (NMM) Release 9.0 software to back up and recover Hyper-V VMs using the Volume Shadow Copy Service (VSS) technology.

Note
The EMC NetWorker Module for Microsoft Administration Guide supplements the backup and recovery procedures described in this guide and must be referred to when performing application-specific tasks. Ensure to download a copy of the EMC NetWorker Module for Microsoft Administration Guide from EMC Online Support (https://support.emc.com) before using this guide.

Audience
This guide is part of the NetWorker Module for Microsoft documentation set, and is intended for use by system administrators during the setup and maintenance of the product. Readers should be familiar with the following technologies used in backup and recovery:

• EMC NetWorker software
• EMC NetWorker data protection policy management
• EMC NetWorker block based backup (BBB) technology
• Microsoft Volume Shadow Copy Service (VSS) technology
• Microsoft Hyper-V server technology
• Microsoft Failover Cluster technology
Revision history
The following table presents the revision history of this document.

Table 1 Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>December, 2015</td>
<td>Updated to incorporate technical feedback from engineering team.</td>
</tr>
<tr>
<td>02</td>
<td>October, 2015</td>
<td>Updated the "Hyper-V Server backup and recovery best practices" section in Best Practices and Recommendations chapter.</td>
</tr>
<tr>
<td>01</td>
<td>September, 2015</td>
<td>First release of this document for EMC NetWorker Module for Microsoft release 9.0.</td>
</tr>
</tbody>
</table>

Related documentation
The NMM documentation set includes the following publications:

- EMC NetWorker Module for Microsoft Release Notes
- EMC NetWorker Module for Microsoft Administration Guide
- EMC NetWorker Module for Microsoft Installation Guide
- EMC NetWorker Module for Microsoft for SQL and SharePoint VSS User Guide
- EMC NetWorker Module for Microsoft for SQL VDI User Guide
- EMC NetWorker Module for Microsoft for Exchange VSS User Guide
- EMC NetWorker Module for Microsoft for Hyper-V VSS User Guide
- EMC NetWorker Module for Microsoft for Windows Bare Metal Recovery Solution User Guide
- EMC NetWorker Performing Backup and Recovery of SharePoint Server by using NetWorker Module for Microsoft SQL VDI solution Technical Notes
- EMC NetWorker Performing Exchange Server Granular Recovery by using NetWorker Module for Microsoft with Ontrack PowerControls Technical Notes
- EMC NetWorker SharePoint BLOB Backup and Recovery by using NetWorker Module for Microsoft and Metalogix StoragePoint Technical Notes
- NetWorker documentation set

Special notice conventions that are used in this document
EMC uses the following conventions for special notices:

- **NOTICE**
 Addresses practices that are not related to personal injury.

- **Note**
 Presents information that is important, but not hazard-related.

Typographical conventions
EMC uses the following type style conventions in this document:
Table 2 Style conventions

Bold Used for names of interface elements, such as names of buttons, fields, tab names, and menu paths (what the user specifically selects or clicks)

Italic Used for full titles of publications that are referenced in text

Monospace Used for:
- System code
- System output, such as an error message or script
- Pathnames, file names, prompts, and syntax
- Commands and options

Monospace italic Used for variables

Monospace bold Used for user input

`[]` Square brackets enclose optional values

`|` Vertical bar indicates alternate selections - the bar means “or”

`{}` Braces enclose content that the user must specify, such as x or y or z

`...` Ellipses indicate non-essential information that is omitted from the example

Where to get help

EMC support, product, and licensing information can be obtained as follows:

Product information

For documentation, release notes, software updates, or information about EMC products, go to EMC Online Support at https://support.emc.com.

Technical support

Go to EMC Online Support and click Service Center. Several options for contacting EMC Technical Support appear on the site. Note that to open a service request, you must have a valid support agreement. Contact your EMC sales representative for details about obtaining a valid support agreement or with questions about your account.

Online communities

Go to EMC Community Network at https://community.emc.com for peer contacts, conversations, and content on product support and solutions. Interactively engage online with customers, partners, and certified professionals for all EMC products.

Your comments

Your suggestions help to improve the accuracy, organization, and overall quality of the user publications. Send your opinions of this document to DPAD.Doc.Feedback@emc.com.
CHAPTER 1
Introduction

This chapter includes the following sections:

- Overview
- Microsoft Hyper-V environments
- How NMM works with Hyper-V
- Using NMM with Hyper-V
- Required privileges
- Example Hyper-V configurations
- Backup overview
- Recovery overview
Overview

Microsoft Hyper-V is a hypervisor-based server virtualization product for Microsoft Windows Server. Hyper-V enables you to create multiple virtual machines (VMs) on a single physical server to consolidate workloads. EMC® NetWorker® Module for Microsoft (NMM) provides backup, image recovery, and granular recoveries of the Microsoft Hyper-V role that is installed on Windows Server 2012 and 2012 R2 as well as on Server Core installations for Windows Server 2012 and 2012 R2.

NMM uses the VSS framework, including writers and providers, to back up and recover each virtual machine and the Hyper-V host component.

NMM supports the following types of storage for virtual machine files:

- Local volumes on a stand-alone server with Windows Server 2012 and 2012 R2
- Cluster Shared Volumes (CSV) on a cluster with Windows Server 2012 and 2012 R2
- Server Message Block (SMB) 3.0 file shares on the following Windows Server 2012 and 2012 R2 file servers:
 - Stand-alone file server
 - Scale-Out File Server (SOFS)

The *EMC NetWorker Module for Microsoft Installation Guide* lists the Hyper-V hardware requirements.

Microsoft Hyper-V environments

The Microsoft Hyper-V documentation provides a complete and updated list of system requirements and supported guest operating system versions.

The *EMC NetWorker Online Software Compatibility Guide*, available on the EMC Online Support website at http://compatibilityguide.emc.com:8080/CompGuideApp, provides the most up-to-date and accurate listing of hardware, operating system, service pack, and application versions that the NMM client supports.

How NMM works with Hyper-V

Hyper-V is a configurable feature on Windows Server that you can use to host the VMs. Each virtual machine is usually a server operating system that runs Microsoft applications, such as:

- Exchange Server
- SharePoint Server
- SQL Server
- Data Protection Manager

Hyper-V runs as a role in Windows Server. NMM uses the Hyper-V VSS writer and Clustered Share Volumes VSS writer on the host to back up and recover Hyper-V data by using APPLICATION save sets. The Hyper-V Writer backs up and recovers Hyper-V configuration and virtual machine files.

VSS is a framework that enables volume backups to be performed while applications on a system continue to write to the volumes. The Hyper-V VSS writer enables the creation of
image backups for virtual machines by quiescing the Windows operating system and applications within the guest for operating system and application consistency.

Using NMM with Hyper-V

You can use NMM with Hyper-V in stand-alone or clustered environments, over SMB 3.0, and with Client Direct to AFTD or Data Domain Boost devices.

Using NMM with Hyper-V in a stand-alone server environment

You can use NMM to protect a stand-alone Hyper-V environment at the image level.

Guest backup and recovery

With guest backup and recovery, you install an NMM client on each virtual machine that hosts databases or specific applications on the Hyper-V server, for example Microsoft Exchange or Microsoft SharePoint. NMM considers each virtual machine to be a separate client, and you can perform individual backups of each virtual machine and Microsoft application.

The following figure illustrates Hyper-V guest backup and recovery with NMM.

Figure 1 Guest backup and recovery environment

![Image 1](image.png)

Image-level backup and recovery

With image-level backup and recovery, you install the NMM client on the Hyper-V Management operating system or the parent partition.

You can perform a full image-level backup of the individual virtual machines and the host component. The Host Component file contains the role-based security configuration for Hyper-V.

The following figure illustrates the image-level backup and recovery environment:
Comparing NMM protection methods for Hyper-V

You can choose whether to perform Hyper-V guest or image-level backup and recovery depending on criterion such as user knowledge of Hyper-V, the Windows operating system running on the guest, and where the NMM software is installed.

The following table provides a comparison of the two methods.

Table 3 Comparison of guest and image-level backup and recovery

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Guest backup and recovery</th>
<th>Image-level backup and recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>User knowledge of Hyper-V</td>
<td>No advanced Hyper-V knowledge is required</td>
<td>Requires advanced Hyper-V knowledge</td>
</tr>
<tr>
<td>Windows guest operating system</td>
<td>Windows guest operating systems that Hyper-V supports, through the use of NMM clients</td>
<td>All guest operating systems that Hyper-V supports</td>
</tr>
<tr>
<td>NMM software installation</td>
<td>NMM and NetWorker on each guest operating system client</td>
<td>NMM and NetWorker on the management operating system</td>
</tr>
<tr>
<td>NetWorker server network connection</td>
<td>Required for each virtual machine</td>
<td>Required only for the Hyper-V server</td>
</tr>
<tr>
<td>Deduplication with the appropriate Data Domain or Avamar device</td>
<td>Data within each virtual machine</td>
<td>Data at image-level</td>
</tr>
<tr>
<td>Support for iSCSI/pass-through disk</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 3 Comparison of guest and image-level backup and recovery (continued)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Guest backup and recovery</th>
<th>Image-level backup and recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for individual backup of each virtual machine</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Application-aware backup and recovery</td>
<td>Yes, with NMM for applications such as:</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Exchange Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft SharePoint Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft SQL Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Microsoft Active Directory</td>
<td></td>
</tr>
<tr>
<td>Virtual machine status for backup</td>
<td>Virtual machine must be running</td>
<td>Virtual machine does not need to be running</td>
</tr>
<tr>
<td>Backup consumption of CPU, RAM, and disk resources</td>
<td>On the virtual machine</td>
<td>On the Hyper-V server</td>
</tr>
<tr>
<td>Backup customization, including exclusion of certain files or file types</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Recovery of individual files and folders</td>
<td>Yes</td>
<td>By using GLR</td>
</tr>
<tr>
<td>Disaster recovery requirements</td>
<td>Windows bare metal recovery (BMR) uses a two-step recovery: 1. Recover the operating system state critical volumes. 2. Use NMM to recover applications and non-critical volume data.</td>
<td>One-step recovery of backup data from NMM. However, full virtual machine image recovery of NMM backup data might or might not reliably support a full system recovery without data loss.</td>
</tr>
</tbody>
</table>

Using NMM in a CSV environment

CSV is a feature of failover clustering available in Windows Server for use with the Hyper-V role. CSV is available for Hyper-V VMs created with Windows Server and is supported by NMM.

A CSV is a clustered disk that requires an NTFS volume. Each node within the cluster can access the volume for read and write operations. This gives the virtual machine complete mobility throughout the cluster as any node can be the virtual machine owner, and changing owners is easy.

A CSV is not owned by any one node in the cluster. Instead, the CSV ownership changes between cluster nodes as the backup and recoveries occur. Microsoft and NMM refer to the node in the cluster where a CSV is locally mounted as the “coordinating node.” The Master Server functions as the coordinating node. NMM moves the CSV ownership among the various nodes to provide optimal backup and recovery performance.

NMM supports physical and virtual proxy nodes for Hyper-V CSV backups. When you specify a Preferred Server Order List (PSOL) in the Application Information attribute for the...
client resource of Cluster Server Name, NMM performs a snapshot on a single node and then each proxy node performs the backups in parallel. The recovery process is the same as for a normal Hyper-V virtual machine.

NMM allows you to use virtual machines on a Hyper-V cluster as proxy nodes for CSV backups. NMM intelligently reassigns and load balances the virtual machines in the backup to the selected virtual proxy nodes. All virtual proxy nodes will perform backups in parallel, thus increasing backup performance. These virtual proxies must be highly available cluster Hyper-V virtual machines, and they must be connected to the same domain as the physical nodes. A mix of physical and virtual machines is supported. NMM automatically excludes the virtual machines for the virtual proxies from backups.

For Hyper-V cluster and CSV environments, including proxy environments, install the NetWorker client and NMM on all nodes in the cluster, including virtual proxies.

Hyper-V CSV in a failover cluster

To prevent a Hyper-V server from becoming a single point of failure, you can create a failover cluster.

In a failover cluster, all servers (nodes) run Hyper-V and can host one or more virtual machines. A virtual machine can run on multiple nodes in the cluster, but can only be active on one node at a time. NMM supports failover clustering for Hyper-V through Clustered Shared Volumes (CSV). NMM 9.0 implements the single snapshot feature: during a backup, a snapshot is created on the active (master) node of the cluster and data is rolled over from proxy nodes.

The following figure illustrates a Hyper-V failover cluster with two nodes. There are four virtual machines that can fail over between the nodes, and a fifth virtual machine runs exclusively on the second node.

Figure 3 Two-node Hyper-V failover cluster
Using NMM with Hyper-V virtual machines over SMB 3.0

NMM supports a backup Hyper-V virtual machines over SMB 3.0 file shares. The SMB file shares can be on either a Scale-Out File Server (SOFS) or on a clustered file server for general use.

Supported SMB file shares
NMM supports SMB file shares on the following Windows Server 2012 and Windows 2012 R2 file servers:

- Stand-alone file server
- Scale-Out File Server (SOFS)
- Clustered file server for general use

Required SMB privileges on page 24 describes the required permissions for SMB backup and recovery.

Windows Server Hyper-V stand-alone configurations with SMB file shares
To back up application-consistent data, install NMM on the node from which you will perform backups. The storage location presents no difference in configuring backups and in performing backups and recoveries for a virtual machine on a stand-alone server or failover cluster. In a federated configuration, the federated cluster client manages requests for all nodes in the cluster and ensures that you can back up all virtual machines on SMB file shares in the cluster.

Windows Server Hyper-V clusters with SMB file shares
If you store virtual machines on SMB 3.0 file shares for use by a Windows Server Hyper-V cluster, then NMM uses a federated architecture to back up and restore the virtual machines. The SMB file shares can be on either a Scale-Out File Server (SOFS) or on a clustered file server for general use.

To perform image-level backups of virtual machines on SMB file shares, install NMM on each node in the Hyper-V cluster.

The federated cluster client receives backup and restore requests from the NetWorker server, and forwards the requests to the NMM client on the cluster nodes. The NMM client on the node performs the backup and sends the backup data and metadata to the NetWorker server. The federated cluster client manages requests for all NMM clients in the cluster and ensures that you can back up all virtual machines on SMB file shares in the cluster.

The following figure illustrates a Windows Server cluster where the federated cluster client facilitates image-level backups of virtual machines on SMB file shares.
You select the federated cluster client as the client for backups and restores. You can back up any of the virtual machines on SMB file shares in the cluster, but you cannot back up virtual machines on local volumes or on CSV.

Configuring an SMB file share

When you store Hyper-V virtual machines on SMB file shares, you must configure the environment.

Procedure

1. If the SMB file shares are on a clustered file server for general use, then install the File Server VSS Agent Service server role on all cluster nodes that are hosting the SMB file shares. Otherwise, backups fail when the NMM proxy cluster client is not the owner node of the virtual machines.

 The Windows Server 2012 documentation on the Microsoft TechNet website provides instructions to install the File Server VSS Agent Service server role.

2. Configure the permissions for each SMB file share to add full permissions for each Hyper-V Server. The “Deploy Hyper-V over SMB” article on the Microsoft TechNet website provides instructions on how to configure the file share using either Server Manager or Windows PowerShell commands.

3. Add the Hyper-V Server to the Backup Operators group on the SMB file server:
 a. In the Administrative Tools for the SMB file server, open the Computer Management window.
 b. Expand the Local Users and Groups node in the left pane, and select Groups.
 c. Right-click Backup Operators in the right pane, and select Properties.
 d. Click Add.
The Select Users, Service Accounts, or Groups dialog box appears.

e. Click **Object Types**.

The Object Types dialog box appears.

f. Select the **Computers** checkbox and click **OK**.

g. Type the name of the Hyper-V Server and click **OK**.

h. Click **OK** on the **Backup Operators Properties** dialog box.

i. In a cluster, repeat these steps for each node.

j. Restart the SMB server or the **Server** service for the changes to take effect.

4. Add each proxy node to the Administrator group of all the nodes. This provides access to the serialization files.

Granular level recovery

When you perform image-level backups with NMM, you can use granular level recovery (GLR) to recover an image backup to a temporary file system on the same client or a different client. After recovery, you can browse and recover individual files and folders.

To browse and recover individual files and folders, select the GLR option when you install NMM on the virtual or physical machine that you want to use for GLR. This machine is typically a different machine than the management operating system.

The following figure illustrates an environment where NMM is installed on a virtual machine to perform a GLR.

Figure 5 Granular level recovery environment

Using NMM with Client Direct to AFTD or Data Domain Boost storage devices

You can store Hyper-V backups on an AFTD device on the NetWorker server, or on an EMC Data Domain system. By default, NMM stores backups on devices that are local to the NetWorker server.

The NMM software supports the following Client Direct features:

- Enables clients with network access to AFTD or Data Domain Boost storage devices to send their backup data directly to the devices, bypassing the NetWorker storage...
node. The storage node manages the devices for the NetWorker clients, but does not handle the backup data.

- Reduces bandwidth usage and bottlenecks at the storage node.
- Provides highly efficient backup data transmission.

Destination devices must specify their complete paths in their Device Access Information attribute. NMM performs backups by using Client Direct. If the Client Direct backup is not available, the backup fails. When you create an NMM client resource in NMC, NetWorker enables the Client Direct feature by default.

The nsrmmsv.raw backup log displays details about the Client Direct activity for the Hyper-V server.

The *EMC NetWorker Administration Guide* provides details about the Client Direct to AFTD or Data Domain Boost storage devices.

Required privileges

The required privileges for backup and recovery of Hyper-V virtual machines are the same as other applications. However, backup and recovery over SMB 3.0 or in a CSV or RDZ environment require additional privileges.

The *NetWorker Module for Microsoft Administration Guide* and the *NetWorker Module for Microsoft Installation Guide* provide additional details.

Required SMB privileges

SMB backup and recovery requires additional privileges beyond Hyper-V backup and recovery privileges.

The following table describes the required privileges for SMB backup and recovery.

<table>
<thead>
<tr>
<th>SMB configuration</th>
<th>Required privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>- Add backup permissions for the backup user on all file servers in the cluster.</td>
</tr>
<tr>
<td></td>
<td>- Add the backup user as the cluster administrator (domain administrator).</td>
</tr>
<tr>
<td></td>
<td>- When Windows is used as the file server, add machine accounts for all cluster nodes and virtual proxies to the local Administrators account of each server in the file server tier.</td>
</tr>
<tr>
<td>File server scale out</td>
<td>In the Local Backup operator group of each SMB node, configure the application server as a member of the Backup Operators group.</td>
</tr>
<tr>
<td>Cluster</td>
<td>Add each CSV node to the SMB nodes of the Local Backup Operator group.</td>
</tr>
</tbody>
</table>

Verify that the Hyper-V server and the file server are in the same domain. Recoveries require the same permissions as the backup user.

To enable communication between the SMB host and clients, install the File Share Shadow Copy Agent on the file server that hosts the SMB file shares.
Required Hyper-V CSV privileges

Hyper-V CSV backup and recovery requires additional privileges beyond Hyper-V backup and recovery privileges. Create a Domain User for Hyper-V backups and recoveries. During client resource configuration for NMM Hyper-V backups, provide this Domain User account and password (instead of providing a Domain Administrator account and password) for backup and recovery.

Procedure

1. Create a Domain User for Hyper-V backups and recoveries.
2. Add the following Active Directory security groups to the newly created Domain User:
 - Backup Operators
 - Hyper-V Administrator
 - Windows Authorization Access Group
 - Users
 - Remote Desktop Users
 - Add Group Policy User Control
 - Group Policy Creator Owners
3. On each cluster node, log in and add the Domain User account to the following groups on the local node:
 - Users
 - Administrators
 - Hyper-V Administrators
 a. Provide local administrator privileges to the Domain User.
 b. Provide access for cluster management to the group. Open PowerShell and type this command:

   ```powershell
   PS C:\....\NMMEMC> Grant-ClusterAccess -User domain\user -Full
   ```

4. On one cluster node, open PowerShell and type the following command:

   ```powershell
   PS C:\....\NMMEMC> Grant-ClusterAccess -User domain\user -Full
   ```

 This command grants the Domain User account full access to the cluster, which provides access for cluster management to the group.

Required RDZ privileges

NMM supports NetWorker Restricted Data Zones (RDZ). An RDZ adds an additional permission checking layer, which ensures that RDZ administrators accessing areas that have not been specifically coded for this feature, by default, do not have access to those areas.

To perform SMB and CSV backups and recoveries in an RDZ, you must configure additional permissions and configuration. The *EMC NetWorker Module for Microsoft Administration Guide* provides details about the required permissions and configuration. The *EMC NetWorker Administration Guide* provides detailed information about the NetWorker RDZ feature.
Example Hyper-V configurations

This section describes some of the possible Hyper-V configurations.

Hyper-V on physical server configurations

The following figure illustrates a physical server that runs Windows Server 2012. This configuration also applies to Windows Server 2012 R2. The Hyper-V role has been enabled on the physical server, and four virtual machines have been created, each running a separate operating system and different Microsoft applications.

Figure 6 Windows Server 2012 host with Hyper-V virtual machines

For complete data protection, configure client resources for each of the following:

- Hyper-V virtual machines on the Hyper-V Server
- The applications within each virtual machine

The following figure describes what the NMM client backs up in Hyper-V, by using the Microsoft Hyper-V VSS Writer and NMM save sets.
Hyper-V storage configurations

A wide variety of storage configurations are available for Hyper-V virtual machines, such as passthrough disks, direct-attached storage (DAS), storage area networks (SANs), and file servers.

The following documentation provides more details about hardware and software requirements for Hyper-V backup and recovery operations:

- The Microsoft website provides more details and the most up-to-date information about storage hardware that Hyper-V supports.
- The EMC NetWorker Online Software Compatibility Guide provides the most up-to-date information about supported software for Hyper-V backup and recovery in NMM.

The following figure illustrates Hyper-V storage options.
The following table lists the Hyper-V virtual machine configurations.

Table 5 Hyper-V virtual machine configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VHD1 on DAS</td>
</tr>
<tr>
<td>2</td>
<td>DAS passthrough</td>
</tr>
<tr>
<td>3</td>
<td>VHD2 on LUN</td>
</tr>
<tr>
<td>4</td>
<td>LUN passthrough</td>
</tr>
<tr>
<td>5</td>
<td>iSCSI target that is attached within virtual machine</td>
</tr>
<tr>
<td>6</td>
<td>VHD3 on file server</td>
</tr>
</tbody>
</table>

Using NMM with Hyper-V virtual machines over SMB 3.0 on page 21 describes the SMB file share configuration.

NMM supports Hyper-V snapshots of virtual and physical machines with the Microsoft VSS provider, depending on the hardware storage type and partition type.

The following list describes how NMM supports the configuration types that are listed in the preceding table:

- **Snapshot support** — NMM supports snapshots for both the Hyper-V server and virtual machines:
 - **Virtual machine** — Install NMM on the virtual machine to perform the backup. If you are using the Microsoft Software VSS provider, NMM supports all configurations.
- Hyper-V server — Install NMM on the parent to perform the backup. If you are using the Windows VSS system provider, NMM supports configuration 1 (VHD1), configuration 3 (VHD2), and configuration 6 (SMB 3.0).
- Cluster support — In addition to the supported configurations listed for snapshots, parent and child cluster scenarios support the following storage configurations:
 - VM clustering — Install NMM on the virtual machine to perform the backup: For failover resource drives, NMM supports configuration 5 (LUN exposed directly to virtual machine).
 - For operating system drives or local drives for the cluster nodes, the virtual machine support that is listed under Snapshot support applies.
 - Hyper-V server clustering — Install NMM on the parent to perform the backup. NMM supports all configurations.

When performing virtual machine backups while executing on the Hyper-V server, the Microsoft Hyper-V Writer does not include the passthrough or child-attached iSCSI drives for a virtual machine. The Hyper-V Writer does not support configurations such as 2, 4, and 5. The Hyper-V Writer does not support configuration 6 because the VSS framework does not support network shares for Windows Server 2012 and 2012 R2.

Hyper-V configuration requirements for backing up a virtual machine that contains multiple volumes

When there are multiple virtual hard disks in the guest, the backup of the associated virtual machine from the Hyper-V server might fail because of a Microsoft limitation. When there are multiple volumes on the guest, VSS determines the shadowstorage area for the snapshots based on which volume has more space. This can lead to a condition where the snapshots of volumes C and D both reside on volume D because volume D has more space. During the snapshot revert stage, PostSnapshot, the snapshot of volume C snapshot might be lost if the snapshot of volume D snapshot is reverted first.

To prepare a multiple volume guest for backup:
1. Use the vssadmin command to force the shadowstorage of each volume to occur on the same volume. Run the following commands from inside each guest, not the parent physical Hyper-V Server.
 - vssadmin Add ShadowStorage /For=C: /On=C:
 - vssadmin Add ShadowStorage /For=D: /On=D:
2. Repeat as needed for each volume in the virtual machine.

Backup overview

You can perform full image-level backups of individual virtual machines or the host component, which contains the role-based security configuration for Hyper-V.

Include the following backups in the backup strategy for a Hyper-V environment:
- Stand-alone Hyper-V servers and Hyper-V images
- Clustered Shared Volumes in a Hyper-V environment
- Hyper-V virtual machines over SMB 3.0

Perform these backups regularly on either an on-demand or scheduled basis.
NMM image-level backups do not back up the management operating system. To protect the Hyper-V management operating system, perform a disaster recovery backup.

Block Based Backups with NMM

Hyper-V Block Based Backup (BBB) enables faster backups and recoveries. For details on BBB, refer to the *EMC NetWorker Module for Microsoft Administration Guide*

Synthetic, synthetic full, and incremental forever backups

NMM 9.0 and later supports synthetic, synthetic full, and incremental forever backups. A synthetic full backup combines a full backup and subsequent incremental backups to form a new full backup. A synthetic full is equivalent to a traditional full backup and can be used in the same ways as a traditional full backup. An incremental backup backs up files that have changed since the last full or incremental backup.

The *EMC NetWorker Administration Guide* provides information about synthetic, synthetic full, and incremental forever backups. Incremental backups reduce storage consumption, network traffic, and backup time. NMM Hyper-V incremental backups rely on change block tracking in the virtual machine. To enable incremental backup of a virtual machine, Windows Server 2012 and later uses the "IncrementalBackupEnabled" property of the "Msvm_VirtualSystemSettingData" data type in WMI v2. Setting this property to "true" enables incremental-full or incremental-incremental backups of the virtual machines.

NMM requires Data Domain Operating System (DDOS) 5.4 or later.

To use these backup levels, it is a best practice to create the following schedule policies:

- Incremental Forever, which is used for BBB backups to DDR target.
- Incremental Forever Full on 1st of Month, which performs a full backup on the first day of each month. This is a best practice for BBB to an AFTD target to limit the depth of the differencing chain.

When you create a client, NMM enables incremental backups by default. NMM automatically enables incremental backups for a virtual machine the first time it is backed up. If you disable incremental backups later, NMM re-enables them. There is no information attribute to control this behavior.

NMM promotes incremental backups to full under the following circumstances:

- NMM does not find a previous Full of the virtual machine.
- The required Recovery Snapshot cannot be validated.
- Incremental backup is not enabled for the virtual machine.

When one virtual machine backup is promoted to full, NMM does not promote other virtual machines in the backup set. NMM uses multiple shadowcopy sessions by a single backup operation to perform full and incremental backups.

Adding a virtual machine to an existing incremental backup

All virtual machines require a full backup. When you add a virtual machine to a Hyper-V server or failover cluster that is scheduled for writer-level incremental backups, NMM determines that the new virtual machine is not enabled for incremental backups because there is no full backup. During the next incremental backup of this writer-level save set, NMM splits the virtual machines into two sets and creates a snapshot for each set:

- Virtual machines that have previously been backed up by NMM and are enabled for incremental backups.
Virtual machines that have never been backed up by NMM or are not currently enabled for incremental backup.

NMM backs up the two sets one at a time. The set containing the full backup for the new virtual machine might take longer to get the initial full backup.

VSS backup consistency types with NMM

You can perform application and crash consistent image-level backups with NMM. Application and crash consistent backups differ in the following ways:

- With an application-consistent backup, VSS runs in-guest and freezes the operating system and all application states. Ensure that the virtual machine is online and VSS-capable, and ensure that you have installed Microsoft Integration Components (IC).

- With a crash consistent backup, the virtual machine does not have the IC installed. In this case, the virtual machine is paused before shadow copy creation and resumed after the shadow is created.

The Hyper-V writer in the management operating system determines if the backup image is application consistent or crash consistent. You do not need to select the backup type when you perform on-demand or scheduled backups.

With image-level saved state or offline backups, the backup operation puts the virtual machine into a saved state during the processing of the PrepareForSnapshot event. The backup process takes snapshots of the appropriate volumes and then returns the virtual machine to the previous state during the processing of the PostSnapshot event.

These backups do not communicate with the Hyper-V VSS writer in the virtual machine. As a result, they ensure crash consistency, not application consistency, of the writers running in the virtual machine.

NMM image-level backup types

You can perform federated image-level backups of clusters, image level backups of stand-alone servers, and backups over SMB 3.0.

The following table lists the supported types of image-level backup.

<table>
<thead>
<tr>
<th>Type of backup</th>
<th>Includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federated Hyper-V image level backup of Hyper-V clusters</td>
<td>Includes virtual machines which are stored on clustered shared volumes.</td>
</tr>
<tr>
<td>Hyper-V image level backup of stand-alone Hyper-V servers</td>
<td>Includes all virtual machines and the host component.</td>
</tr>
<tr>
<td>Hyper-V backup over SMB 3.0</td>
<td>Includes all virtual machines that are stored on SMB 3.0 file servers.</td>
</tr>
</tbody>
</table>

Files included in backups

The Hyper-V VSS Writer reports certain files for each virtual machine during image-level backups with NMM.

The following table lists the reported file type and extension.
Table 7 Virtual machine files supported by the VSS Hyper-V Writer

<table>
<thead>
<tr>
<th>File type</th>
<th>File extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Hard Disk files</td>
<td>.VHDX</td>
<td>For VMs created with Windows Server 2012 and later, Hyper-V uses the Microsoft Virtual Hard Disk (VHDX) specification to store virtual hard disks for VMs. A virtual machine can have one or more virtual disks.</td>
</tr>
<tr>
<td>Virtual machine configuration</td>
<td>.XML</td>
<td>Hyper-V uses a virtual machine configuration file in XML format to store virtual machine settings (for example, CPU, memory, VHDXs).</td>
</tr>
<tr>
<td>Virtual machine Running State files</td>
<td>.BIN .VSV</td>
<td>Hyper-V uses a virtual machine configuration file in XML format to store virtual machine running state (memory) files.</td>
</tr>
<tr>
<td>Virtual Hard Disk Differencing files</td>
<td>.AVHDX</td>
<td>A virtual machine snapshot creates one differencing VHDX file per virtual machine VHDX.</td>
</tr>
<tr>
<td>Virtual machine Configuration Snapshot(s)</td>
<td>.XML</td>
<td>A virtual machine snapshot creates a copy of the current virtual machine configuration and saves it to enable rollback.</td>
</tr>
</tbody>
</table>

Backup process workflow

The workflow for Hyper-V backups with NMM differs greatly, depending on the configuration and backup type.

Image-level VSS backup workflow

The VSS writer enables the creation of image backups for virtual machines by quiescing the Windows operating system and applications within the guest for operating system and application consistency.

The following figure illustrates the workflow for an image-level VSS backup.
During an image-level VSS backup, the following events occur:

1. The NetWorker server sends a request to the NMM client on the Hyper-V management operating system to start the backup for the specified virtual machines.

2. NMM sends a request to the VSS framework to create a point-in-time consistent backup for the virtual machine.

3. The VSS framework contacts the Hyper-V VSS writer and requests that the writer prepare for volume shadow copy (VSC) for the specified virtual machine.

4. The Hyper-V VSS writer establishes a communication path with Hyper-V VSS Integration Components (IC) on the virtual machines that are being backed up.

5. The Hyper-V VSS IC requests a VSC from VSS inside the virtual machines.

6. Inside the virtual machine, VSS sends a VSC preparation request to all applications within the virtual machine. All the applications are quiesced, and then control is returned to VSS.

7. VSS creates a VSC inside the virtual machine.

8. VSS returns control to the VSS IC requestor.

9. When the VSC completes, the Hyper-V VSS IC requestor notifies the Hyper-V VSS writer and CSV VSS writer on the management operating system.

10. The Hyper-V VSS writer returns control to VSS.
11. VSS creates a VSC on the management operating system for the required volumes.
12. The post VSC process occurs to synchronize changes between the VSC created on the virtual machine and the shadow copy that is created on the physical machine.
13. VSS returns control to NMM.
14. NMM performs a backup from the VSC.

Ensure that the IC versions for the backup Hyper-V Server and the guest virtual machine match. If you plan to recover the guest virtual machine to an alternate Hyper-V Server, then ensure that the alternate Hyper-V Server uses the same version of IC.

NMM federated architecture for Hyper-V failover clusters

NMM supports failover clusters through a federated architecture that manages backup and recovery across the Hyper-V cluster. The federated architecture complies with Microsoft CSV and Hyper-V cluster rules. The federated architecture provides failover resiliency for Hyper-V highly available virtual machines by determining which physical cluster node is running a virtual machine at the time of a backup or recovery operation.

The federated architecture includes two roles:

- Primary role—Provides the point of communication for the NetWorker browse, backup, and recovery jobs. The primary role also controls the high-level virtual machine image backup and recovery workflow across the cluster nodes.
- Secondary role—Provides low-level virtual machine image backup and recovery workflow on specific cluster nodes.

You use the NMC client configuration wizard to configure the NMM Windows CSV client. After you configure the CSV client, NMM issues browse, backup, and recovery jobs against the NMM CSV client name.

The NMM process starts when NetWorker issues a job (workorder) to the NMM Windows CSV client that is operating in the primary role. For virtual machine image backup and recovery operations, the primary role determines which cluster nodes run the virtual machines that are specified in the job (workorder), and then dispatches sub-jobs to the appropriate cluster nodes. A dispatched sub-job results in an NMM process starting on the target cluster node, and that process operates in the secondary role. The secondary role manages the CSVs and interacts with the Microsoft Hyper-V VSS writer for backup and recovery operations.

Image-level saved state backup workflow

If a virtual machine is paused when a backup occurs, then the state changes to a saved state after the backup, which is also called an offline backup.

The following figure illustrates the workflow for an image-level saved state backup.
During an image-level saved state backup, the following events occur:

1. The NetWorker server sends a request to the NMM client on the Hyper-V management operating system to start the backup for the specified VMs.

2. NMM sends a request to VSS to create a point-in-time consistent backup for the virtual machine.

3. VSS contacts the Hyper-V VSS writer and requests a preparation request for VSC for the specified virtual machine.

4. The Hyper-V VSS writer sends a request to the hypervisor to put the specified VMs into a pause state to freeze the I/O.

5. The Hyper-V VSS writer returns control to VSS.

6. VSS creates a VSC on the management operating system for the required volumes.

7. The Hyper-V writer returns the specified virtual machine to running state.

8. VSS returns control to NMM.

9. NMM performs a backup from the volume shadow copy.
Image-level backup workflow in Hyper-V federated backups

Federated Hyper-V image-level backups of Hyper-V clusters include virtual machines that are stored on cluster shared volumes (CSVs).

The following figure illustrates the primary and secondary CSV backup workflows in Hyper-V federated backups.

Figure 11 Image-level backup workflow for federated backups

CSV federated backup with no proxy node

This topic describes the process for a Hyper-V federated backup with no proxy node.

1. The primary NMM client receives the save sets from the NetWorker Server, listing the virtual machines to backup.
2. The CSV API is called to discover the required CSV volume.
3. The VSS and Hyper-V VSS Writer and CSV VSS Writer are called to select the virtual machines for the image backup and to create a shadow copy with the point-in-time copy of the virtual machine files.
4. The virtual machine files are backed up from the shadow copy to the NetWorker server.

CSV federated backup with proxy node

During a CSV federated backup with a proxy node, the following events occur:

1. The primary NMM client receives the save sets from the NetWorker Server, listing the virtual machines to backup and list of proxy servers.
2. The primary NMM client starts the backup on the proxy server.
 a. The cluster master node of the Windows Cluster creates a primary NMM backup process that moves CVS volumes to the proxy nodes and takes a snapshot of the CSV volumes.
b. A secondary NMM backup process spawns on the proxy nodes, which copies data from the snapshot to backup media.

3. The virtual machine files are backed up from the shadow copy to the NetWorker server.

Recovery overview

The following recovery options are available when you perform regular backups as discussed in Backup overview on page 29:

- Perform a recovery of a virtual machine to its original location on the original Hyper-V Server.
- Perform a redirected recovery of a virtual machine to an alternate Hyper-V server.
- Perform a redirected recovery of a virtual machine on the same Hyper-V server to a different location.
- Perform a GLR of individual files and folders.

Types of supported recovery

The following table lists the supported types of recoveries.

<table>
<thead>
<tr>
<th>Type of recovery</th>
<th>Includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federated Hyper-V image level recovery of Hyper-V clusters</td>
<td>Virtual machines that are stored on CSVs.</td>
</tr>
<tr>
<td>Virtual machine recovery</td>
<td>Individual virtual machines and the host component.</td>
</tr>
<tr>
<td>Granular or file level recovery</td>
<td>Individual files and folders from a virtual machine backup.</td>
</tr>
</tbody>
</table>

Recovering to the original Hyper-V Server

You might need to recover a virtual machine to its original location on the original Hyper-V Server from which the backup was performed if one certain scenarios occurs.

Recover to the original location when:

- You must roll back the virtual machine because a patching or virus issue occurred.
- You must perform disaster recovery of the virtual machine after a disk failure.
- The virtual machine was accidentally deleted.

When you recover a virtual machine to its original location. The recovery process deletes or overwrites all files on the virtual machine, if the host exists.

Performing Hyper-V recovery to the original machine and location on page 60 describes how to recover a virtual machine to the original location.

Redirected recovery of a virtual machine to an alternate Hyper-V Server

You can recover a virtual machine to an alternate Hyper-V server.

To perform the recovery:
- Select a different Hyper-V server for the virtual machine recovery process.
- Select a different file system location for the files on the original Hyper-V Server.
- In a clustered environment, select the CSV where the files will be placed during a recovery.

NMM supports redirected recoveries to a host running the same or later operating system version. For example: NMM supports redirected recovery from a Windows Server 2012 R2 source host to a Windows Server 2012 R2 destination host, but NMM does not support redirected recovery from a Windows Server 2012 R2 source host to a Windows Server 2012 destination host.

Performing a directed Hyper-V recovery to a different machine or location on page 61 describes how to recover a virtual machine to an alternate Hyper-V Server.
This chapter includes the following sections:

- Planning backups ... 40
- Configuring backups .. 44
- Performing cluster-level and CSV virtual machine backups 45
- Configuring multi-proxy backups ... 46
- Configuring a client resource by using the Client Configuration Wizard ... 49
- Configuring a client resource manually by using the NetWorker Management Console .. 52
Planning backups

This section contains information and considerations to review before backing up Hyper-V virtual machines.

Viewing valid application data save sets

When you configure a client resource, type the save sets in the Save Set attribute of the client resource.

To display a list of the application data save sets that are available for backup:

Procedure

1. Open a command prompt on the application server and type the required command.
2. If the Hyper-V Server is a stand-alone host, then type:

 `nsrnmmsv -P`

3. If the Hyper-V Server is configured as a cluster, then type:

 - For SMB configurations: `nsrnmmsv -P -A NSR_FEDERATED_BACKUP=yes -A NSR_FEDERATED_TYPE=smb`
 - For CSV configurations: `nsrnmmsv -P -A NSR_FEDERATED_BACKUP=yes -A NSR_FEDERATED_TYPE=csv`

If the application server is on a cluster virtual host, run the command from the physical node that is hosting the application server.

The following examples show the application data (Hyper-V guest virtual machine) save sets that are available on a Hyper-V system with two virtual machines, `virtual_machine_name_1` and `virtual_machine_name_2`, on stand-alone and cluster virtual hosts.

Windows Server on a stand-alone virtual host:

On a stand-alone virtual host:

```
"APPLICATIONS:\Microsoft Hyper-V"
"APPLICATIONS:\Microsoft Hyper-V\Host Component"
"APPLICATIONS:\Microsoft Hyper-V\virtual_machine_name_1"
"APPLICATIONS:\Microsoft Hyper-V\virtual_machine_name_2"
```

On a cluster virtual host:

```
"APPLICATIONS:\Microsoft Hyper-V"
"APPLICATIONS:\Microsoft Hyper-V\Host Component"
"APPLICATIONS:\Microsoft Hyper-V\non-csv"
"APPLICATIONS:\Microsoft Hyper-V\vm27_rename1"
```

Remove the inverted commas when copying the save set name from the output to the save set attribute in the client resource. Each line of output corresponds to a save set entry that you can add to the Save Set attribute of a client resource. Type each entry that you add to the Save Set attribute on a separate line.

4. Press Enter.
Integration services components version

Ensure that the IC version that runs inside the virtual machine is the same as the version of Hyper-V on the host. To determine the version of Hyper-V on the server, start the Hyper-V manager and then select About Hyper-V Manager from the Help menu.

Procedure

1. In the Device Manager application inside the guest virtual machine, on System Devices, select Device Manager.
2. Right-click the entry Microsoft Hyper-V Volume Shadow Copy.
4. Check the version on the Driver tab.
5. If the version does not match the Hyper-V version, insert the integration services disk by choosing that option under the Action menu in the virtual machine console.
6. Install the integration components, and then restart the virtual machine.

Special character considerations

NMM Hyper-V restricts the use of special characters in virtual machine names and configuration paths.

NMM Hyper-V supports the following characters in virtual machine names and virtual machine configuration paths, including stand-alone, CSV, and SMB 3.0 configurations:

- Alphanumeric (A–Z, a-z, 0–9)
- - . [] { } + = ` ~ ! # $ % ^ & ()
- Space

If a Hyper-V save set contains a virtual machine name or virtual machine configuration path that includes a character that is not listed above, the backup or recovery might fail. For example, foreign language character sets, such as Japanese or German, are not supported.

Backups – If a Hyper-V virtual machine name or configuration path contains a character that is not listed above, the CSV backup fails. However, if the virtual machine name or configuration path contains a character that is not listed above, backups of virtual machines in a stand-alone or SMB configuration succeeds.

Recovery – If a Hyper-V virtual machine name or configuration path contains a character that is not listed above, recovery to the original location succeeds. If a Hyper-V virtual machine name or configuration path contains a character not listed above:

- Stand-alone recovery to the original location succeeds.
- Stand-alone redirected recovery to an alternate location fails.
- CSV and Hyper-V over SMB 3.0 recovery to the original location and redirected recovery to an alternate location fails.

Save set names – When specifying a save set name that contains a character that is not listed above, replace the special character with a URL-encoded value. URL encoding converts non-ASCII and Unicode characters into a format that NMM supports.

The following table lists the most commonly used special characters and their associated URL values.
Table 9 Common special characters and their URL-encoded values

<table>
<thead>
<tr>
<th>Special character</th>
<th>URL-encoded value</th>
<th>Special character</th>
<th>URL-encoded value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>%5C</td>
<td>?</td>
<td>%3F</td>
</tr>
<tr>
<td>/</td>
<td>%2F</td>
<td>}</td>
<td>%5D</td>
</tr>
<tr>
<td>"</td>
<td>%22</td>
<td>[</td>
<td>%5B</td>
</tr>
<tr>
<td>%</td>
<td>%25</td>
<td>}</td>
<td>%7D</td>
</tr>
<tr>
<td>#</td>
<td>%23</td>
<td>\</td>
<td>%7B</td>
</tr>
<tr>
<td>&</td>
<td>%26</td>
<td>^</td>
<td>%5E</td>
</tr>
<tr>
<td><</td>
<td>%3C</td>
<td>'</td>
<td>%60</td>
</tr>
<tr>
<td>></td>
<td>%3E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example, specify a save set that is named APPLICATIONS:\Microsoft Hyper-V\vmA&B as APPLICATIONS:\Microsoft Hyper-V\vmA%26B.

Windows Server 2012 and 2012 R2 Hyper-V CSVs

For Windows Server 2012 and 2012 R2, Microsoft has released several special requirements and special APIs to support backup applications. A backup application can back up all the CSVs from a single node. CSVs are not required to be put in I/O Redirection Mode, and CSVs can be backed up in parallel.

The Windows Server 2012 and 2012 R2 interoperability backup application is CSV-aware because the CSV writer metadata information must be updated to its component name by querying the primary server for CSV resources.

In Windows Server 2012 and 2012 R2, the new CSV VSS writer can report the backup components on the behalf of a remote node. This CSV VSS Writer can also take the snapshots of volumes on the remote node. These features enable NMM to back up not only the local image of a Hyper-V virtual machine, but also to back up the image that is located on a remote node. This allows for more configuration options. For example, you can dedicate a single node to back up the cluster.

Manually configuring highly available backups (cluster-aware backups)

Due to enhancements in Windows Server 2012 and 2012 R2 CSVs, you can back up CSV virtual machines as part of a highly available (cluster-aware) backup or a physical proxy node backup. Cluster-aware backups are highly available because you install NMM on each node in the cluster. If one node is not available, NMM starts the backup from the node that resolves to the cluster server name at runtime.

You can configure a highly aware backup by using the client configuration wizard. The following procedure describes how to configure the backup manually.

Procedure

1. Install NMM on each node in the cluster.
2. Create an empty (placeholder) NetWorker client resource for each node in the cluster.
3. Create a client resource for the cluster server name and specify the save sets to back up. Add this client to a backup group.
4. At runtime, the cluster server name resolves to one of the nodes in the cluster. This node becomes the master backup node.

Windows Server 2012 R2 shared VHDX files

In Windows Server 2012 R2, NMM does not support VHDX backups when the Microsoft option "Enable virtual hard disk sharing" is enabled. Virtual machines with shared VHDX virtual machines are ignored and the back-up continues with the rest of the save set. To protect the data in a VHDX that is virtual hard disk sharing enabled, install the NMM software on the guest virtual machine and run the backup inside the guest virtual machine.

Backups over SMB 3.0

NMM supports Hyper-V virtual machines residing on Windows Server 2012 and 2012 R2 SMB 3.0. You back up stand-alone servers and non-CSV failover clusters over SMB the same way you back up local virtual machines. To back up CSVs over SMB, NMM uses a federated backup architecture.

Differencing disks

A differencing disk is a VHD that contains changes for another VHD or the guest operating system. Differencing disks are stored in the same subdirectory as the parent VHDX for the virtual machine. This location is not configurable.

Incremental changes since the last checkpoint or backup are written to a new differencing disk. This differencing disk gets merged to its parent disk after the backup completes. When a snapshot occurs as part of a backup, a new differencing disk is created. This new differencing disk receives all the writes until the next backup starts. The backup saves the differencing disk as part of an incremental backup. If you create checkpoints, then multiple differencing disks can be present on the system. If you do not create checkpoints, there is one differencing disk present along with parent disk.

To estimate the required additional primary storage for differencing disks, consider the scale of changes happening inside the virtual machine. As a virtual machine grows, it requires more storage space on the primary disk. NMM logs how much data it has backed up for each backup.

Hyper-V virtual machine checkpoints

The Hyper-V Management interfaces allow Hyper-V users to create and manage virtual machine checkpoints to capture virtual machine state at strategic points. Hyper-V user checkpoints create differencing disks that provide roll back capabilities to these strategic points. Currently shipping versions of Hyper-V do not recommend virtual machine checkpoints for production virtual machines.

When NMM backs up a Hyper-V virtual machine, the differencing disks that are associated with virtual machine checkpoints that NMM merges on backup media and the checkpoints are removed from the virtual machine configuration that is backed up. The backup preserves the Hyper-V user created checkpoints for the live virtual machine and the live virtual machine configuration.

When you recover a backup that had a virtual machine checkpoint at the time of backup, data from this checkpoint is included in the restore. However, the checkpoint is no longer present in the virtual machine configuration and will not be displayed in the Hyper-V virtual machine checkpoint management interfaces.
Configuring backups

When configuring backups, the backup tasks differ depending on the items to back up. You must specify the correct save set syntax and Application Information attributes to perform a backup.

The following table describes the backup tasks to perform when you back up Hyper-V parent and virtual machines.

Table 10 Backup tasks for Hyper-V

<table>
<thead>
<tr>
<th>Items to back up</th>
<th>Backup tasks to perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the server</td>
<td>1. Configure the backup storage resources.</td>
</tr>
<tr>
<td>The Hyper-V role can coexist with other</td>
<td>2. Configure a backup group.</td>
</tr>
<tr>
<td>Microsoft applications, such as:</td>
<td>3. Configure one or more client resources for each client by using either the Client</td>
</tr>
<tr>
<td></td>
<td>Backup Configuration Wizard or the Client Properties dialog box. Configuring a client resource by using the Client Configuration Wizard on page 49 and Configuring a client resource manually by using the NetWorker Management Console on page 52 provide details.</td>
</tr>
<tr>
<td>• SQL Server</td>
<td>4. Configure a data protection policy for scheduled backups, including selecting a group,</td>
</tr>
<tr>
<td>• SharePoint Server</td>
<td>policy, policy workflow, and backup action.</td>
</tr>
<tr>
<td>• Exchange Server</td>
<td>5. Configure privileges.</td>
</tr>
<tr>
<td></td>
<td>The EMC NetWorker Module for Microsoft Administration Guide and EMC NetWorker Administration Guide provide details on how to perform these tasks.</td>
</tr>
<tr>
<td>Hyper-V on the server</td>
<td></td>
</tr>
<tr>
<td>Hyper-V virtual machines and Host Component file</td>
<td>1. Configure the backup storage resources.</td>
</tr>
<tr>
<td></td>
<td>2. Configure a backup group.</td>
</tr>
<tr>
<td></td>
<td>3. Configure one or more client resources for each client by using either the Client</td>
</tr>
<tr>
<td></td>
<td>Backup Configuration Wizard or the Client Properties dialog box. Configuring a client resource by using the Client Configuration Wizard on page 49 and Configuring a client resource manually by using the NetWorker Management Console on page 52 provide details.</td>
</tr>
<tr>
<td></td>
<td>4. Configure a data protection policy for scheduled backups, including selecting a group,</td>
</tr>
<tr>
<td></td>
<td>policy, policy workflow, and backup action.</td>
</tr>
<tr>
<td></td>
<td>The EMC NetWorker Module for Microsoft Administration Guide and EMC NetWorker Administration Guide provide details on how to perform these tasks.</td>
</tr>
<tr>
<td>Hyper-V virtual machine applications</td>
<td>Install NMM on the virtual machine operating system and configure application backups with NMM installed within the virtual machine operating system. Specific instructions for the Microsoft application are provided in the following:</td>
</tr>
<tr>
<td>Microsoft application data, such as:</td>
<td>• Configure Windows application backups.</td>
</tr>
<tr>
<td>• SQL Server</td>
<td></td>
</tr>
</tbody>
</table>
Performing cluster-level and CSV virtual machine backups

NetWorker performs CSV virtual machine backups through a client resource that is created for the cluster virtual server only. You create client resources for all the nodes in the cluster and for the cluster server. However, the backup is scheduled against the cluster virtual server client resource only. NetWorker indexes the backup against the cluster server name.

NMM supports backups for all CSV virtual machines as well as individual CSV virtual machines. Configuring backups on page 44 provides details about how to perform Hyper-V backups.

Note

A Hyper-V CSV distributed backup supports only conventional backups from a temporary shadow copy (rollover). NMM does not support proxy host backups and instant backups that use persistent point-in-time shadow copies.

Performing a CSV-level federated backup

To perform a CSV-level federated backup, you must set the Application Information attributes for the cluster virtual server and the client resource.

Apply the following settings:

- Set the save set attribute “Applications: \Microsoft Hyper-V\” in the client resource for the cluster virtual server to back up all the CSV virtual machines in the cluster.
- Add `NSR_FEDERATED_BACK=YES` and `NSR_FEDERATED_TYPE=CSV` to the Application Information attribute in the client resource.

Performing a CSV virtual machine backup

To perform a CSV virtual machine backup, set the save set attribute `APPLICATIONS: \Microsoft Hyper-V\` in the client resource for the cluster virtual server to back up the CSV virtual machine in the cluster.

NMM supports backup of non-clustered virtual machines that run on specific cluster nodes. NMM excludes virtual machines that do not reside on the CSV from the CSV backup. Backup and recovery of non-clustered virtual machines is managed through the individual physical node name, not the cluster virtual server client resource. The physical node name is the client resource name.
Configuring multi-proxy backups

To meet backup windows for larger Hyper-V environments, you can improve performance by scaling out the Hyper-V CSV backups to multiple cluster nodes or proxies.

When you create multiple proxies, NMM should be installed on all cluster nodes and virtual proxies. There must be client resources for all the cluster nodes, virtual proxies, and cluster alias.

You add secondary roles, which must be physical or virtual cluster nodes. You specify the proxy host by setting NSR_FEDERATED_PSOL in the Application Information for the client resource of the cluster, or by using the Preferred Server Order List (PSOL) in the Client Configuration Wizard. The PSOL distributes the backup workload across all servers in the PSOL. You schedule the backups against the cluster alias, and the primary role runs on the cluster node that owns the cluster alias. The recovery process for virtual machines backed up as part of a multi-proxy setup is the same as the recovery process for traditional backups.

In a multi-proxy architecture, you can select multiple cluster nodes to act as proxy nodes to perform parallel backups on all proxy nodes. An NMM CSV algorithm is used to intelligently reassign assign virtual machines to proxies and, if the NSR_MOVE_CSV_OWNERSHIP application information attribute is set to Yes, assign CSVs to proxies. The backup load is evenly split between multiple nodes. All proxy nodes will perform backups in parallel, significantly increasing backup performance compared with single proxy backups in a normal distributed CSV environment. You can add or remove proxy nodes as needed.

NMM takes a single snapshot of the Windows Server 2012 and 2012 R2 Hyper-V cluster from the controlling node. NMM mounts the snapshot on the primary node and shares it among the secondary nodes. This makes the snapshot process faster.

If all of the selected proxy nodes are unavailable, then NMM performs the backup on the node to which the cluster alias is resolved.

Hyper-V intelligent proxies

NMM allows you to use virtual machines on a Hyper-V cluster as proxy nodes for CSV backups. NMM intelligently reassigns and load balances the virtual machines in the backup to the selected virtual proxy nodes. All virtual proxy nodes will perform backups in parallel, thus increasing backup performance. These virtual proxies must be highly available cluster Hyper-V virtual machines, and they must be connected to the same domain as the physical nodes. A mix of physical and virtual machines is supported. NMM automatically excludes the virtual machines for the virtual proxies from backups.

The NMM controller node is the cluster node on which the cluster alias is currently active. All servers in the PSOL are treated as proxies. Before starting the distribution of CSVs, the controller validates all the servers in the PSOL and excludes any unavailable nodes from the PSOL. It is a best practice to configure more proxies in the PSOL so that a spare node will always be available. Because NMM uses the cluster alias to schedule cluster backups, NMM is immune to node failures. If the currently active node fails, the cluster alias will move to a different node.

The CSV ownership distribution algorithm logic tries to distribute the CSVs among the proxies equally. For example, in an 8-node cluster with 4 CSVs:

- If two servers are in the PSOL, then NMM backs up two CSVs per proxy.
- If four servers are in the PSOL, then NMM moves the CSV ownership for maximum performance and backs up one CSV per proxy.
- If five servers are in the PSOL, then NMM backs up one CSV per proxy for four of the servers.
Multi-proxy backup components
In addition to the existing single proxy client components, NMM uses the following software components in multi-proxy backups:

- **Main proxy client** — NMM schedules and browses backups against the cluster server name (cluster alias). The NMM process that starts on the active node of the cluster alias is the main proxy client. The main proxy client node acts as the primary node in the cluster.

- **Client software** — You must install the NetWorker and NMM client software on all secondary proxy nodes. This ensures tolerance for node failures, because the cluster alias ownership can change.

- **CSV ownership distribution algorithm** — When the NSR_MOVE_CSV_OWNERSHIP value is Yes, NMM changes the coordinator node of the CSV.
 - The CSV coordinator node owns the storage stack for the CSV. Although other nodes might read and write files on the CSV through the SCSI stack, all metadata operations go to the coordinator node.
 - The CSV coordinator node also owns the VSS software shadow copy for the CSV. In this case, I/O on the coordinator node is local, but I/O of the shadow copy volume from other nodes is redirected to the coordinator node over the network.
 - When CSV ownership moves, the software shadow copies for that CSV also move.
 - NMM evenly distributes the backup load across the proxy nodes you select, and the proxy nodes perform backups in parallel to maximize the backup performance. Additionally, if you want to have an optimized I/O path to the CSV shadow copy for the proxy nodes, select to move CSV ownership.

- **Application Information attributes** — You can configure Hyper-V CSV options by using the Client Configuration Wizard or by using the NetWorker Management Console to edit the client resource for the cluster alias. To enable multi-proxy backups by using the NetWorker Management Console, add the following Application Information attributes on the main proxy client:
 - **NSR_FEDERATED_PSOL** — Enables multi-proxy backups and distributes the backup workload across all servers in the PSOL.

 For example:

    ```
    NSR_FEDERATED_PSOL=server1, server2, server3
    ```

 where `server1`, `server2`, and `server3` will act as proxy servers.

 If you do not specify `NSR_FEDERATED_PSOL`, NMM performs the backup from the current active node and substitutes the cluster master node as the proxy node. If you specify values for `NSR_FEDERATED_PSOL`, NMM performs backups from all the valid, available nodes in the list. If the number of nodes is greater than the number of CSVs, NMM excludes the nodes that exceed this number.

 - **NSR_MOVE_CSV_OWNERSHIP** — Uses the CSV ownership distribution algorithm to allow or disallow CSV ownership change during multi-proxy backups for optimal backup performance. After you initially create the client resource, you can allow or disallow CSV ownership changes as needed.

 For example:

    ```
    NSR_MOVE_CSV_OWNERSHIP=Yes
    ```
    ```
    NSR_MOVE_CSV_OWNERSHIP=No
    ```

 The default value is Yes. If you set the value of this attribute to Yes, then NMM changes the CSV ownership. If you set this attribute value to No, then NMM does not change the CSV ownership.
Configuring multi-proxy backups in an SMB configuration

To achieve better backup performance for Hyper-V over SMB Cluster environments on Windows Server 2012 R2, you can use parallel federated, multiple proxy-based backups. In a parallel federated multi-proxy architecture, you can select multiple SMB cluster nodes to act as proxy nodes. These nodes perform parallel VSS snapshots and parallel federated data backups on all the selected proxy nodes. The backup load is evenly distributed between all proxy nodes (as much as possible) to perform backups in parallel, thus significantly increasing backup performance compared to the existing "federated or single proxy" backup method. NMM also supports virtual machines running on a Hyper-V cluster as proxy nodes for performing Hyper-V over SMB cluster backups on Windows Server 2012 R2.

To use this backup method, add `NSR_FEDERATED_BACKUP=yes`, `NSR_FEDERATED_TYPE=SMB`, and `NSR_FEDERATED_PSOL=node1, node2, node3` to the client resource of the cluster.

Best practices for configuring multi-proxy backups

You can improve multi-proxy backup performance by following best practices for configuring and allocating Hyper-V proxies.

The following section describes the components that affect multi-proxy backup performance. This section also describes best practices for configuring these components to achieve best backup performance.

Load balance virtual machine data on CSVs

To attain maximum backup performance, load balance virtual machine data on all the available CSVs as much as possible.

NMM performs load balancing by running a correlational factor of the number of virtual machines residing on the CSVs and the common size share. NMM calculates a 'set of CSV' for a 'set of virtual machine' whose maximum common share resides on those CSVs. NMM moves this set of CSV to one proxy and backs up the set of corresponding virtual machines from that node. Maintaining proper CSV load balance results in fewer CSV ownership changes.

Allocate the number of proxy nodes and CSVs

When determining how many proxy nodes to use, you should allocate the maximum number of proxy nodes to gain maximum backup performance. Increasing the number of proxy nodes can improve backup performance. However, this maximum number of proxy nodes should be less than or equal to the maximum number of CSVs.

For best performance, the number of CVSs should be multiples of the number of proxy nodes. Each virtual machine should be contained within a single CSV only, rather than distributed across multiple CSVs.

Allow CSV ownership change

To achieve maximum backup performance, change CSV ownership to the nodes with less CSV data. CSV ownership change allows the NMM CSV algorithm to intelligently change
CSV ownership to the proxy nodes you selected, thereby properly load balancing the backup data. NMM performs the data split per CSV, not per virtual machine.

Select proxy nodes with good system resources

Backups can be an intensive operation on system resources. To attain optimal backup performance, select cluster nodes with maximum resources available as proxy nodes. Select nodes with minimal live data movement, so that the backup operation does not disturb the day-to-day production activities.

Configuring a client resource by using the Client Configuration Wizard

The NMM Configuration Wizard for Hyper-V simplifies configuration of scheduled backups for NMM clients for Hyper-V servers. The NMM client must be installed on all Hyper-V cluster nodes for the Client Backup Configuration wizard to work.

The NMM Configuration Wizard for Hyper-V automatically configures Hyper-V save sets, backup commands, Application Information attributes, and backup options. Use the wizard to configure client resources for stand-alone and federated environments.

Before you use the wizard, review the following requirements:

- Ensure that the NetWorker server host is listed in the `servers` file on the client computer.
- Ensure that the communication between the NMC server, NetWorker client, and NetWorker server uses `nsrauth` strong authentication.
- Ensure that the user who runs the wizard meets the following requirements
 - NetWorker server and client privileges, or root (UNIX) or Administrator (Windows) privileges.
 - A member of a User Group on the NetWorker server that has Configure NetWorker privileges.
- Ensure that multiple wizard hosts are not trying to access the same client computer simultaneously.

Procedure

1. Use NMC to connect to the NetWorker server.
2. In the Administration window, click Protection.
3. In the expanded left pane, right-click Clients and select New Client Wizard.

 The Client Backup Configuration wizard appears, starting with the Specify the Client Name page.
4. In the Client Name field, type the name of the client where NMM is installed:
 - For federated backups, type the cluster server name.
 - For non-federated backups, type the Standalone Hyper-V server name.
5. Optionally, in the Comment box, type a description of the client.
6. In the Tag box, type one or more tags to identify this Client resource for the creation of dynamic client groups for data protection policies.

 Place each entry on a separate line.
7. In the **Type** box, select **Traditional NetWorker client**.

8. Optionally, from the **Group** list, select a group for the **Client resource**.
 The group to which the client belongs determines the workflow that is used to back up the client.

 Note
 You can also assign the client to one or more groups after you create the Client resource.

9. Click **Next**.

10. On the **Specify the Backup Configuration Type** page, select **Hyper-V Server** and click **Next**.

11. On the **Select the NetWorker Client Properties** page:
 - Select the priority level in the **Priority** field.
 - Select the level of parallelism in the **Parallelism** field.
 - Leave the **Remote Access** field empty.
 - Select the device type from the **Data Domain Interface** list.
 - Select the **Parallel Save Streams** option to enable multiple save streams for each save set during backup.

 Note
 To use the default NetWorker Client settings, do not update the options that are provided on the page.

12. Click **Next**.

 The **Select the Hyper-V Backup Objects** page appears. The **Select the Hyper-V Backup Objects** page automatically discovers the save sets depending on the operating system type and client name. By default, all save sets are selected for backup.

13. To exclude a save set from the backup, perform the following steps:
 a. Select the top level save set.
 b. Select the **Exclude Component List** option that appears at the bottom of the page.
 c. Clear the save set that you want to exclude from the backup.

14. Click **Next**.

 The **Specify Backup Options** page appears.

15. On the **Specify Backup Options** page:
 - **For federated setups** — The wizard creates empty (placeholder) client resources for all nodes that are not used to perform the backup. The wizard also creates a client resource with the cluster name and specifies the NSR_FEDERATED_BACKUP=yes attribute. In the **Remote user** field, specify an administrator user account of the administering machine in the format of **username@hostname**. In the **Password** field, specify the password for the user account.
 - **For stand-alone setups** — The wizard creates a client resource with the physical name using the selected save sets.

 If you select both CSV and non-CSV virtual machines, the backup fails.
- For CSV configurations, you can select **Move CSV ownership** to allow or disallow CSV ownership to change during multi-proxy backups for optimal backup performance. After you initially create the client resource, you can allow or disallow CSV ownership changes as needed. By default, federated backups are performed as CSV.

- For SMB configurations, select **Perform backup of virtual machines over SMB3**, which will clear **Move CSV ownership** option.

- To support partial backup failure, select **Perform partial writer backup**. When you select this option, if snapshot creation fails for some virtual machines, the backup continues for other virtual machines. The Hyper-V VSS Writer reports the virtual machines that failed to back up.

- To take a full backup and then take incremental backups, select **Force VSS COPY-FULL backup type** to specify the VSS COPY-FULL backup type. By default, this box is unchecked and the backup type is VSS FULL.

- To perform copy-level backups inside the virtual machine, select **Perform copy-level backup inside VM**.

- For federated setups, in the **Select Proxy Servers for Preferred Server Order List (PSOL)** section, you can distribute the workload across multiple nodes in the cluster. Select a server in the **Available Servers** list and then click the right arrow to move it to the **Proxy Servers** list.

16. Click **Next**.

 The **Backup Configuration Summary** page appears.

17. On the **Backup Configuration Summary**, do one of the following:

 - Click **Back** to revisit the previous pages.
 - Click **Create** to configure the client resources.

 The Client Configuration Results page appears. This page provides details about the client resources that have been created.

18. To change the configuration that you created earlier, in the NetWorker Management Console, select the client, right-click, and select **Modify Client Wizard**.

19. To verify the details for the client, on the **Administration** window, select the client, right-click, and select **Modify Client Properties**.

20. Optionally, to modify remote user access:

 a. On the **Administration** window, select the client, right-click, and select **Modify Client Properties**.

 b. On the **Globals (2 of 2)** tab, type the hostname of the proxy client in the **Remote Access** attribute.

 If the NMM client is part of a cluster, type the names of the physical nodes of the cluster in the **Remote Access** attribute.
Configuring a client resource manually by using the NetWorker Management Console

You can manually create a Hyper-V client resource by using the Client Properties dialog box.

Procedure
1. In the Administration window, click Protection.
2. In the expanded left pane, select Clients.
3. Right-click Clients and select New.
4. Click the General tab.
5. On the General tab:
 a. In the Name attribute, type the hostname of the NetWorker client computer.
 b. In the Comment field, type a description. If you are creating multiple client resources for the same NetWorker client host computer, use this attribute to differentiate the purpose of each resource.
 c. In the Save Set attribute, specify the components to be backed up. Place multiple entries on separate lines. The following table provides the save set syntax.

Table 11 Hyper-V save set syntax

<table>
<thead>
<tr>
<th>Type of backup data</th>
<th>Save set syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper-V Manager</td>
<td>APPLICATIONS:\Microsoft Hyper-V</td>
</tr>
<tr>
<td>The Hyper-V Host Component file and each virtual machine.</td>
<td>The Hyper-V Writer does not support offline backup of the configuration file.</td>
</tr>
<tr>
<td>Hyper-V Host Component file</td>
<td>APPLICATIONS:\Microsoft Hyper-V\Host Component</td>
</tr>
<tr>
<td>There is one configuration file in the Hyper-V Manager installation. This file lists the Hyper-V settings for the host operating system and the guest operating systems.</td>
<td>The Hyper-V Writer does not support offline backup of the configuration file. You cannot use the APPLICATIONS:\Microsoft Hyper-V\Host Componentsave set in a proxy backup group.</td>
</tr>
<tr>
<td>Hyper-V virtual machine</td>
<td>APPLICATIONS:\Microsoft Hyper-V\virtual_machine_name</td>
</tr>
<tr>
<td>There are usually multiple virtual machines on the host operating system.</td>
<td>Child pertains or virtual machines can be included in a proxy backup group.</td>
</tr>
</tbody>
</table>

 d. Select the appropriate option in the Protection group list field.
6. Click the Apps & Modules tab and do the following:
 a. In the Remote user and Password fields respectively, type the domain administrator username and password.
 For guest virtual machines hosted over SMB 3.0 and CSV, the backup fails if you do not provide the domain administrator credentials.
 b. In the Backup command attribute, type the following backup command: nsrnmmsv.exe.
c. In the **Application Information** attribute, specify the attributes for the backup. The following table lists the variables that can be specified in the Application Information attribute of the client resource.

Table 12 Hyper-V application information variable settings

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR_FEDERATED_BACKUP</td>
<td>Marks the backup for CSV and SMB recovery.</td>
<td>Yes</td>
</tr>
<tr>
<td>NSR_FEDERATED_TYPE</td>
<td>Specifies whether the backup is federated CSV or SMB.</td>
<td>• SMB (required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CSV (optional)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this attribute is not specified, NMM applies the CSV value by default.</td>
</tr>
<tr>
<td>NSR_FEDERATED_PSOL</td>
<td>Optional. Distributes the backup workload across physical and virtual servers in the PSOL. If a server is not available or down, then NMM performs the backup from the node to which the cluster server name resolves, including virtual proxies.</td>
<td>Type a comma-separated list of the server names. For example: NSR_FEDERATED_PSOL=server1, server2, server3</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td>A Hyper-V CSV backup fails if the same machine name is added twice in PSOL list.</td>
</tr>
<tr>
<td>NSR_EXCLUDE_SMB</td>
<td>Optional. Excludes virtual machines that have data that is stored on SMB file servers. By default, SMB virtual machines are included in the writer level backup.</td>
<td>Yes</td>
</tr>
<tr>
<td>NSR_VSS_FULL_BACKUP</td>
<td>Default value is Yes. When the value is Yes, NMM initially performs a full backup and subsequently performs incremental backups.</td>
<td>• Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No</td>
</tr>
</tbody>
</table>

Backups

Configuring a client resource manually by using the NetWorker Management Console 53
Table 12 Hyper-V application information variable settings (continued)

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the value is No, then NMM performs a copy full backup and merges the recovery snapshot with the base VHDX.</td>
<td></td>
</tr>
<tr>
<td>NSR_VM_COPY_BACKUP</td>
<td>If the value is Yes, NMM performs a VSS COPY backup in guest virtual machines, which means there is no log truncation for applications running in guest virtual machines. If the value is No, NMM performs a VSS FULL backup in guest virtual machines. By default, all Hyper-V virtual machine backups are VSS COPY type.</td>
<td>Yes</td>
</tr>
<tr>
<td>NSR_PARTIAL_BACKUP</td>
<td>Optional. Supports partial backup failure. If snapshot creation fails for some virtual machines, the backup continues for other virtual machines. The Hyper-V VSS Writer reports the virtual machines that failed to backup.</td>
<td>Yes</td>
</tr>
<tr>
<td>NSR_EXCLUDE_COMPONENTS</td>
<td>Optional. Excludes a virtual machine from the backup. Specify the writer level save set and the components to exclude from the backup. NMM logs</td>
<td>Type a comma-separated list of the server names. For example: NSR_EXCLUDE_COMPONENTS=VM1, VM2, VM3</td>
</tr>
</tbody>
</table>

Table 12 Hyper-V application information variable settings (continued)

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>the excluded components in the nsrmmsv.raw log file for references.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Click the **Globals (1 of 2)** tab and, in the **Aliases** attribute, type the NETBIOS name for the client.

NMM client uses the host machine NETBIOS or “short” name when connecting to the NetWorker server to browse backups. If the NETBIOS name is not found, NMM cannot display backups.

8. To set up remote access, click the **Globals (2 of 2)** tab and do one of the following:

- If you are setting up a proxy client for the NMM client, type the hostname of the proxy client in the **Remote Access** attribute.
- If the NMM client is part of a cluster, type the names of the physical nodes of the cluster in the **Remote Access** attribute.

9. Click **OK**.

Editing a client resource that was created by using an NMM 8.2.x or earlier release

Perform these steps to edit the existing client resources for NMM backups. Make these changes for all existing client resources.

To recover backups that were created by using an NMM 8.2.x or earlier, modify the existing client resource.

Procedure

1. In the **Administration** window, click **Protection**.
2. Right-click **Clients** in the navigation tree or right-click the required client in the **Clients** table.
3. Select **Modify Client Properties**.
4. In the **Backup Command** field, delete the `nsrsnap_vss_save` command and type the `nsrmmsv.exe` command. Perform this change for all existing client resources.
5. If the **NSR_VSS_FULL_BACKUP** variable is not specified in the **Application Information** field, then all Hyper-V VSS backups are automatically performed as Copy type backups. To continue with this default behavior, specify **NSR_VSS_FULL_BACKUP=no** in the **Application Information** field. Not using **NSR_VSS_FULL_BACKUP** or using **NSR_VSS_FULL_BACKUP=yes** enables Hyper-V virtual machine backups.
6. Make other changes, if required.
7. Click **OK**.
CHAPTER 3

Recoveries

This chapter includes the following sections:

- Overview .. 58
- Turning the virtual machine offline for recovery .. 58
- Hosting the recovered virtual systems .. 58
- Specifying the destinations for the Hyper-V configuration files and virtual system 59
- Selecting the Hyper-V recovery destination ... 60
- Recovering Hyper-V CSV virtual machines ... 63
Overview

Depending on what you specified in the backup save set, you can recover the following from an NMM Hyper-V virtual machine backup:

- All Hyper-V components
- The Host Component file
- Individual or multiple virtual machines
- Granular level recoveries for individual files and folders

NOTICE

To recover backups that were created using an NMM release earlier than 9.0, click Start > EMC NetWorker > NetWorker Tools > Restore previous NMM release backups to start the NetWorker Module for Microsoft GUI. Browse the backups and perform the recovery from the GUI that appears.

Turning the virtual machine offline for recovery

Before you start the recovery operation, take the virtual machine offline. If the virtual machine is online when you start the recovery, the Hyper-V Writer turns off the virtual machine.

Once the virtual machine is offline, the recovery process destroys the current virtual machine, recovers the recovery version, and registers the virtual machine.

The Hyper-V Writer automatically detects whether the virtual machine is online, and turns it off. No action is required by you.

Hosting the recovered virtual systems

The Destination Host page allows you to recover the virtual system to the original location.

Procedure

1. Open the NMM client software and select the NetWorker server on which the NMM client software was configured for backup.

 If the NMM client is part of a cluster, select the physical client to which you are recovering data. The physical client can be selected from the Client List attribute in the application toolbar.

 If the client does not appear in the list of available clients, add the client by clicking on Options > Configure Options > Client name (click on the icon beside), and then add the client from the List of available clients section to the Clients to list on menu bar section.

2. From the left pane, select Recover > Hyper-V Recover Session > Image Recovery.
3. From the navigation tree, select a single virtual machine under the Microsoft Hyper-V writer.
4. From the Hyper-V Recover Session toolbar, click Advanced Recovery.

 The Hyper-V Recovery wizard starts and the Destination Host page appears.
5. Select **Recover (Overwrite) Virtual System to original location**.
 The Finish button is available and Next button is unavailable when you select this option.

6. Click **Finish**.
 The Finish button validates the server location and displays the Hyper-V Recovery Options page.

7. Click **Start Recover**.

Specifying the destinations for the Hyper-V configuration files and virtual system

The Destination Host page allows you to specify the destination directory for the Hyper-V configuration files and the destination host for each virtual system.

Procedure

1. Open the NMM client software and select the NetWorker server on which the NMM client software was configured for backup.
 If the NMM client is part of a cluster, select the physical client to which you are recovering data. The physical client can be selected from the **Client List** attribute in the application toolbar.
 If the client does not appear in the list of available clients, add the client by clicking on **Options > Configure Options > Client name** (click on the icon beside), and then add the client from the **List of available clients** section to the **Clients to list on menu bar** section.

2. From the left pane, select **Recover > Hyper-V Recover Session > Image Recovery**.

3. From the navigation tree, select a single virtual machine under the Microsoft Hyper-V writer.

4. From the **Hyper-V Recover Session** toolbar, click **Advanced Recovery**.
 The Hyper-V Recovery wizard starts and the **Destination Host** page appears.

5. In the **Destination for Hyper-V configuration files** dialog box, click **Browse** to change the destination path.
 The Select Virtual System Destination list displays the destinations for each virtual system VHD/VHDX. The specified host must have the NMM client installed.

6. To change the destination path:
 a. Select a virtual system.
 b. Click **Change Destination**.
 The **Remote Directory Browser** dialog box appears.

7. Click **Finish** to validate the settings.
 If the destinations are valid, then the **Hyper-V Recovery Options Summary** dialog box appears.

8. Click **Start Recover**.
 NMM validates all the pages. If the pages are all valid, NMM starts the recovery.
Selecting the Hyper-V recovery destination

You can select the destination of the Hyper-V recovery to the original machine or to a different machine or location.

When you perform a Hyper-V recovery on Windows Server Core, the recovery is a directed recovery. Because the Server Core installation does not provide a GUI, you must use another machine to start the recovery. To recover a Windows Server Core virtual machine through directed recovery, you must use the No Proxy option.

Restrictions and requirements for relocating and recovering data to a different location on page 108 provides details about other restrictions.

Performing Hyper-V recovery to the original machine and location

You might need to recover virtual machines to their original location if the virtual machines have been corrupted or deleted.

When you recover virtual machines to the original Hyper-V server, the original drive letters or mount points for the virtual machines must exist on the system, and the directory paths are automatically created. If any of the files from the virtual machines are still on the Hyper-V Server, then the recovery deletes or overwrites the files.

If the recovered virtual machine was a clustered virtual machine, then the recovery creates the virtual machine on one of the cluster nodes. However, you must use Microsoft Cluster Manager to make the virtual machine highly available.

Because Hyper-V recognizes virtual machines by an internal GUID, you cannot move or rename the current virtual machine during the recover if the virtual machine exists on the Hyper-V Server.

The Host Component file contains the authorization configuration for Hyper-V. If the file has become corrupted or you need to roll back the authorization settings, you might need to recover the Host Component to the original Hyper-V Server. The NMM System Component backups also include the Host Component.

Procedure

1. Open the NMM client software and select the NetWorker server on which the NMM client software was configured for backup.

 If the NMM client is part of a cluster, select the physical client to which you are recovering data. The physical client can be selected from the Client List attribute in the application toolbar.

 If the client does not appear in the list of available clients, add the client by clicking on Options > Configure Options > Client name (click on the icon beside), and then add the client from the List of available clients section to the Clients to list on menu bar section.

2. From the left pane, select Recover > Hyper-V Recover Session > Image Recovery.

3. From the navigation tree, select the Hyper-V Writer or individual virtual machines under the Hyper-V Writer.

4. From the Hyper-V Recover Session toolbar, click Recover.

 The Hyper-V Recover Session Summary dialog box appears.

5. If all the options are correct, then go to 9 on page 61. If you want to change options, then go to 6 on page 61.
6. Click Recover Options.
7. On the General tab, specify the Diagnostic Output Level.
8. On the Security tab, specify pass phrases if any are needed.
9. Click OK to close the Hyper-V Recover Session Options dialog box.
10. Click Start Recover.

Results
NMM validates all pages. If all pages are valid, then the recovery begins.

Performing a directed Hyper-V recovery to a different machine or location

You can recover a virtual machine to the original Hyper-V Server, but move the virtual machine files to different file system locations. This type of recovery is necessary if the virtual machine files were moved after the selected backup time and you want to preserve the new locations. If the original virtual machine is present, then the virtual machine is overwritten during the recovery.

Procedure
1. Open the NMM client software and select the NetWorker server on which the NMM client software was configured for backup.
 - If the NMM client is part of a cluster, select the physical client to which you are recovering data. The physical client can be selected from the Client List attribute in the application toolbar.
 - If the client does not appear in the list of available clients, add the client by clicking on Options > Configure Options > Client name (click on the icon beside), and then add the client from the List of available clients section to the Clients to list on menu bar section.

2. From the left pane, select Recover > Hyper-V Recover Session > Image Recovery.
3. From the navigation tree, select a single virtual machine under the Microsoft Hyper-V writer.
4. From the Hyper-V Recover Session toolbar, click Advanced Recovery.
 The Hyper-V Recovery wizard starts and the Destination Host page appears.
5. Specify the destination host server for the Virtual System recovery:
 - To recover to the same location as the original:
 a. Select Recover (Overwrite) Virtual System to original location.
 b. Perform the steps in 6 on page 62.
 - To recover to a different path on the same Hyper-V Server:
 a. Select Recover Virtual System to a different path and then click Next.
 The Destination Path page appears, and you can specify a destination for each Virtual System. The specified host must have the NMM client installed.
 - If the virtual machine is online or active, you must recover the virtual machine to the same node on which it is active.
 b. Click Browse to specify the destination location for the configuration files. After you select the destination location for the configuration files, you can change the destination location for the virtual machine’s virtual disks.
 c. To change the destination location for a virtual disk, select the virtual machine’s virtual disk in the list, and then click Change Destination. Repeat as needed for each virtual disk destination that you want to change.
d. When you have completed changing destinations, go to 6 on page 62.

The destinations that are provided on this page are Microsoft's default configuration file locations and might not match the Hyper-V configuration. Change the destination as needed.

When you attempt a directed recovery to a different path on the same Hyper-V server, the recovery process takes the recovery virtual machine offline and then recovers the data to the alternate location. NMM registers the virtual machine pointing to the data in the new location.

You can remove the Virtual Hard Disk (VHD) files of the original virtual machine manually after the recovered Hyper-V child components are up and running.

- To recover to a different Hyper-V server:

a. Click Recover Virtual System to a different Hyper-V Server.

b. From the Select Remote Host list, click the server that you want to recover to.

c. Click Next.

d. The Destination Path page appears, where you can specify a destination for each Virtual System.

e. On the Destination Path page, click Browse to specify the destination location for the configuration files. After you select the destination location for the configuration files, you can change the destination location for the virtual machine's virtual disks.

f. To change the destination location for a virtual disk, select the virtual machine's virtual disk in the list, and then click Change Destination. Repeat as needed for each virtual disk destination that you want to change.

g. When you have completed changing destinations, go to 6 on page 62.

The destinations that are provided on this page are Microsoft's default configuration file locations and might not match the Hyper-V configuration. Change the destination as needed.

When you attempt a directed recovery to a different Hyper-V Server and the destination Hyper-V Server has an existing virtual machine with the same name as the one being recovered, the recovery process takes the virtual machine offline and recovers the data to the alternate location. NMM registers the virtual machine pointing to the data in the new location.

If you are recovering a virtual machine with same name to different Hyper-V server, you can remove the VHD files of the original virtual machine present earlier with the same name manually after the recovered Hyper-V child components are up and running.

6. To validate and start recovery, click Finish.

 NMM validates the recovery and does the following:

 • If the validation is not successful, then NMM displays an error message.

 • If the validation is successful, then NMM displays a summary page that lists the Hyper-V and NetWorker Recover options that you specified.

 • If you must change any of the options, click Recover Options or Back.

7. Click Start Recover.

 NMM validates all pages. If all pages are valid, NMM starts the recovery.
Recovering Hyper-V CSV virtual machines

The following sections describe the supported types of Hyper-V CSV recoveries.

Note

Ensure that the NMM client is installed on all the cluster nodes before performing Hyper-V non-proxy recovery option.

SMB 3.0 virtual machine recovery

This section describes how to perform a recovery of Hyper-V virtual machines over SMB 3.0.

Note

NMM does not support redirected recovery of virtual machines over SMB 3.0.

CSV virtual machine recovery

NMM supports recoveries for Hyper-V CSV virtual machines at the cluster level and at the individual CSV virtual machine level. NMM supports recoveries only on supported NMM hosts that run the Hyper-V service. This host might be outside of the cluster.

NMM recovers the CSV virtual machines that you select on the cluster node where the virtual machine is active. If a CSV virtual machine does not exist at the time of recovery, then NMM recovers the virtual machine to the majority node.

If no virtual machines exist in the cluster, then for the deleted virtual machine:

- If the winclient is started from within the cluster, then the recovery operation starts on the node that runs the winclient.
- If the winclient is started from outside cluster, then NMM recovers the deleted virtual machine to the cluster owner node.

Redirected recovery of a clustered virtual machine to a node where it is not active is not allowed on the cluster where the virtual machine resides. If you request a relocated recovery of a virtual machine to a node on a cluster, but the virtual machine is already active on another cluster node, then the recovery fails. EMC recommends that you move the virtual machine to the desired node first and then start the virtual machine recovery.

When you select a single virtual machine, NMM supports the following types of recoveries:

- **Default recovery (Recover on the cluster node where the virtual machine is active)*** — This is the default recovery when you click Recover. NMM recovers the selected virtual machine to the cluster node where it is active. If the virtual machine does not exist, NMM recovers it to the owner node.
- **Advanced recovery** — When you click the Advanced Recover... option, you can select one of the following options:
 - **Recover Virtual System to active virtual system cluster node** — If the virtual machine is already active on the destination cluster node, then you can recover the virtual machine to a path that differs from the path at the time of the backup.
 - **Recover Virtual System to a different cluster node** — If the virtual machine does not exist in the cluster, you can recover the selected virtual machine to an alternate node in the cluster. If the virtual machine exists in
the cluster but is not active on the destination node, then the recovery fails. In this case, first migrate the virtual machine to the destination node and then perform either a default recovery or an advanced recovery.

- **Recover Virtual System to a different Hyper-V server**
 — You can recover the selected virtual machine to a Hyper-V server outside of the cluster.

You can choose to recover all CSV virtual machines or multiple CSV virtual machines. NMM cannot recover the selected CSV virtual machines on their respective cluster nodes when the virtual machine is active. If a CSV virtual machine does not exist at the time of recovery, NMM recovers the virtual machine to the owner node.

After you recover a virtual machine, confirm that the recovery process registers the virtual machine. If the virtual machine is not registered as a cluster resource, use Failover Cluster Manager to register the virtual machine as cluster resource.

Recovering with a Windows Server 2012 and 2012 R2 proxy CSV server

You can select a proxy node for the CSV recovery operation.

Procedure

1. Open the NMM client software.
2. From the left pane, select **Recover > Hyper-V Recover Session**.
3. Click the **CSV Proxy Server** tab and select a proxy server recovery option.
4. For stand-alone setups, select **No Proxy**.
5. For federated setups, select one of the following options:
 - **Local Server or Current Host Server**—Select this option only for nodes that are configured using the Windows Server 2012 and 2012 R2 GUI.
 - When the NMM GUI runs on a server in the cluster, NMM treats the local host as the default server. Otherwise, NMM treats the current host server, the server to which cluster server name resolves, as the default server for recovery operations.
 - **Choose a Server**—Select this option for nodes that are configured using the Windows Server 2012 and 2012 R2 GUI or nodes that are configured using Windows Server 2012 and 2012 R2 core.
 - Select a server from the drop-down box to choose a proxy for recovery operations. You can select any server in the cluster.
 - **No Proxy**—Select this option for all Windows Server 2012 and 2012 R2 installations.
 - No proxy server is used.
6. Click **OK**.
7. Click **Recover**.
8. Click **Start Recover**.
 - NMM validates the information on all pages. If all pages are valid, then NMM starts the recovery.
9. To validate and start recovery, click **Finish**.
 - NMM validates the recovery and does the following:
 - If the validation is not successful, then NMM displays an error message.
 - If the validation is successful, then NMM displays a summary page that lists the Hyper-V and NetWorker Recover options that you specified.
If you must change any of the options, click Recover Options or Back.

Recovering multiple CSV VMs to the original location

You can recover multiple clustered Hyper-V VMs to the same location as the original CSV VM.

Procedure
1. Open the NMM client software.
2. From the left pane, select Recover > Hyper-V Recover Session.
3. From the navigation tree, select Image Recovery.
4. Select the cluster name from the Client menu.
5. Select the VMs you want to recover.
6. Click Recover.
7. Click Start Recover.
 NMM validates the information on all pages. If all pages are valid, then NMM starts the recovery.
8. To validate and start recovery, click Finish.
 NMM validates the recovery and does the following:
 - If the validation is not successful, then NMM displays an error message.
 - If the validation is successful, then NMM displays a summary page that lists the Hyper-V and NetWorker Recover options that you specified.
 - If you must change any of the options, click Recover Options or Back.

Recovering an individual CSV Hyper-V virtual machine to a different location

You can recover an individual CSV virtual machine to a different location. Only single virtual machine recovery to different location is supported.

Procedure
1. Open the NMM client software.
2. From the left pane, select Recover > Hyper-V Recover Session.
3. From the navigation tree, select Image Recovery.
4. Select the cluster name from the Client menu.
5. Click Advanced Recover.
 The Hyper-V Advance Recovery wizard starts and the Destination Host page appears. Select the destination to recover the CSV virtual machine.
 - To recover the virtual machine to the node on which it is currently active:
 a. Click Recover Virtual System to Active Virtual System Cluster Node.
 b. Click Next.
 c. Click OK.
 d. Click Recover Options.
 e. Select the CSV Proxy Server tab.
 f. Click No Proxy.
Note

If Proxy based recovery is selected on the CSV proxy server tab, a dialog box displays the following warning: Proxy based recovery outside Cluster is Not Supported

• To recover the virtual machine to a different node:
 a. Click Restore Virtual System to a Different Cluster Node.
 b. Select the remote host to which you will recover the CSV virtual machine.
 c. Click Next.
 d. Specify the destination path for the configuration files.

This option is only available if the selected virtual machine does not exist in the cluster. To recover a virtual machine that exists on the cluster but is not active on the destination node, you must first migrate the virtual machine to the destination node and then perform either a default recovery or an advanced recovery.

• To recover the virtual machine to a different Hyper-V Server:
 a. Click Recover Virtual System to a Different Hyper-V Server.
 b. Select the remote host to which you will recover the CSV virtual machine.
 c. Click Next.
 d. Click OK.
 e. Click Recover Options.
 f. Select the CSV Proxy Server tab.
 g. Click No Proxy.
 h. Specify the destination path for the configuration files.
 i. To perform the validation, click Finish.

NMM performs the validation. If the validation is not successful, then NMM displays an error message. If the validation is successful, then NMM displays a Summary page that lists the specified Hyper-V and NetWorker Recover options.

6. If you need to change any of the options, click the Recover Options or Back button.
7. Click Start Recover.

NMM validates the information on all pages. If all pages are valid, then NMM starts the recovery.
CHAPTER 4

Granular Level Recoveries

This chapter includes the following sections:

- Overview... 68
- Recovering Hyper-V files and folders... 68
Overview

Granular level recovery (GLR) provides the ability to recover specific files from a single backup without recovering the full virtual machine, which drastically reduces the recovery time.

NMM can perform a GLR for backups of Hyper-V VMs that you created with NMM 2.4 or above. You can only use GLR for VMs running Windows operating systems. Hyper-V GLR functionality is included in the NMM client software.

The NMM GLR feature uses BBB to mount the virtual machine that contains the items to recover. When the Hyper-V GLR completes, you can choose to unmount the virtual machine or perform another Hyper-V GLR operation. You can only use Hyper-V GLR to recover data that has been rolled over to backup media that supports GLR.

NMM only allows browsing and recovery of one virtual machine at a time, and NMM does not support the recovery of the same backup to multiple clients simultaneously. If you try to mount another virtual machine while you use the Hyper-V GLR, NMM unmounts the first virtual machine and you lose access to the contents of the first virtual machine until you remount it.

EMC recommends that you provision a system to act as the NMM Hyper-V GLR proxy. The Hyper-V GLR proxy has the required setup so that you can granularly recover files from a Hyper-V image backup. NMM supports the use of a 64-bit Windows Server virtual machine or physical machine as the GLR proxy system.

Using this GLR proxy setup, you can recover files from any NMM Hyper-V backup of a Hyper-V virtual machine with a supported operating system installed. After NMM recovers the files or folders that are local to the proxy machine, you must manually move or data mine the files as needed. The NetWorker administrator configures the NetWorker authentication to allow the NMM Hyper-V GLR proxy client the rights to recover any save set that NMM needs to mount.

NMM supports the following Windows Server 2012 Hyper-V GLR features:

- Recovery of data from a VHDX hard disk
- Recovery of FAT32, NTFS, and ReFS volume data
- GLR of Hyper-V VMs over SMB

NMM does not support the following Windows Server 2012 Hyper-V GLR features:

- Recovery of data from a Windows Server 2012 Storage Spaces disk on a virtual machine
- Differencing disk with parent and child hard disk on different hard drives
- Recovery of deduplicated data

Recovering Hyper-V files and folders

While you perform the steps in the following procedure, you can switch to the Monitor pane to see the progress of the recovery operation and to check for error messages. NMM displays any problems attaching hard disks, recognizing virtual machines, or expanding virtual machines in the Monitor window.

Procedure

1. On the GLR proxy server, open the NMM client.
If the GLR proxy server is not available, open the NMM client on the physical machine where the backup was taken. This option requires you to install GLR on the physical machine.

2. From the left pane, click Recover > Hyper-V Recover Session > Granular Level Recovery.

NMM displays the GLR-capable virtual machines for the selected client.

3. In the navigation tree, locate the Hyper-V virtual machine that contains the folders or items you want to recover.

To search for a particular item within the save set, right-click the virtual machine and then click Search for.

Note
The Search for option is enabled only when the source virtual machine is mounted.

4. Right-click the target virtual machine and then click Mount.

NMM mounts the virtual machine. If another virtual machine is already mounted for GLR recovery, NMM notifies you that it will unmount the first machine. Click OK to continue the mounting process with the second virtual machine, or click Cancel to leave the first machine mounted.

5. Click a VHD to display a list of the virtual machines it contains in the right pane. If a VHD does not mount, NMM displays an error message. You can continue to work with the other available VHDs. Hyper-V GLR cannot mount raw VHDs (hard disks that have not been formatted).

6. Locate the folders or items that you want to recover by completing one of the following steps:
 - Expand the virtual machines to view a list of their contents.
 - Right-click a virtual machine and then click Search for to search for a specific folder or item.

 Depending on virtual machine size, loading a virtual machine can take awhile. You can start other operations in the Recover pane while waiting for a virtual machine to load. After the virtual machines load, you can perform data mining.

7. Select the checkbox beside each item to recover. If you select a folder for recovery, then NMM also selects the folder contents for recovery.

 You can specify a destination file path to recover the files. NMM retains the files in their original folder hierarchy. NMM overwrites files that exist on the destination path. If you do not specify a destination path, NMM uses a default recovery path.

8. To specify a destination path to recover the items to, click Recover Options in the Hyper-V Recover Session toolbar.

9. In the Hyper-V Recover Session Options window, click the Granular tab and specify a destination path to recover the items to.

10. Close the Hyper-V Recover Session Options window.

11. Click Recover in the Hyper-V Recover Session toolbar.

12. In the Hyper-V Recover Summary window, click Start Recover to start the recovery.

 NMM recovers the files in the destination path by creating the original folder hierarchy.

13. Close the Hyper-V Recover Session Summary window.

 To view the recovery progress, click Monitor in the left pane. When a recovery is in progress, you cannot perform other tasks in the Recover pane. After a recovery
completes, you can perform browse and recovery actions on the mounted virtual machine.
CHAPTER 5

File Level Recoveries

This chapter includes the following sections:

- **Introduction** ... 72
- **Performing a browser-based file level restore** 72
- **Performing a directed file level restore** 74
- **Monitoring file level restores** ... 75
- **Hyper-V FLR web UI log files** ... 75
Introduction

The NMM Hyper-V File Level Restore (FLR) UI allows NetWorker administrators to restore files that are stored on any Hyper-V virtual machine that is configured for NetWorker protection. As a NetWorker administrator, you can select Hyper-V backups to restore from, browse and search for files, select files and folders, and perform either browser-based or directed recoveries. The Hyper-V FLR UI is fully web-based and run in a web browser.

The Hyper-V FLR web UI supports two restore workflows:

- Browser-based restore - Download the backup to a local folder or network location.
- Directed restore - Restore items to a specific virtual machine and location.

The Hyper-V FLR web UI requires NetWorker 9.0 or later, and NetWorker Authentication Service must be configured.

To access the Hyper-V FLR web UI, you can log in as a NetWorker administrator who is part of the NetWorker Security Administrator and Application Administrator user groups. Note that the Hyper-V FLR web UI provides access to any Hyper-V data that has been backed up on the NetWorker server.

To perform Hyper-V FLR recoveries without logging in as a NetWorker administrator:

- Add the remote client to the Backup Operators group on the Hyper-V Server host
- Install Hyper-V Integrated Services on all VMs on the remote machine
- In PowerShell, run the `enable-psremoting` cmdlet. During redirected recovery, NMM requires this cmdlet so that it can fetch the list of running VMs and open live VMs from the remote Hyper-V server.

The Hyper-V FLR web UI also requires the NMM Recovery Agent (NMM RA), which is installed as part of the standard NMM installation package. To perform recoveries to a Hyper-V virtual machine, install NMM Proxy RA. The *EMC NetWorker Module for Microsoft Installation Guide* provides details.

The proxy server communicates with NW Adapter, mounts virtual machine backups, and serves data for browser-based and directed restores. The proxy server also queries Hyper-V servers to get a list of running VMs on each Hyper-V server. The proxy server can be any host that has required permissions on the NetWorker server to access virtual machine backups from the different Hyper-V servers that it manages. The proxy server requires Failover Clustering in order to mount virtual machines on a CSV.

Required ports for Hyper-V File Level Restore GUI

The Hyper-V FLR service uses the following ports:

- 10000 HTTP
- 11000 Secure HTTPS
- 10099 Cache Service
- 10024 Persistence Service
- 9090 NetWorker Authentication Service

Performing a browser-based file level restore

The Hyper-V FLR web UI browser-based file level restore process follows a step-by-step, wizard-like workflow similar to the directed file level restore process. You can use the
browser-based restore option to select items to recover and then download the recovered files.

Procedure

1. From a supported web browser, type the URL of the Hyper-V FLR web UI:

 \[http://server_name:http_service_port\]

 where:

 - `server_name` is the name of the Hyper-V FLR web UI.
 - `http_service_port` is the port for the embedded HTTP server. The default HTTP port is 10000.

 For example: \[http://houston: 10000\]

2. Log in using NetWorker administrator credentials.

3. In the Select the Hyper-V Server area, select the Hyper-V server that contains the virtual machine you want to restore from by using one of the following options:
 - Select a server from the list that is displayed in the Select the Hyper-V Server list.
 - Click the sort button to sort the list of servers alphabetically.
 - Type a search term in the search field. The results display in the Select the Hyper-V Server list. Select a server from this results list. To clear the search term, click the "x" in the search field.

4. In the Select the Virtual Machine area, select the virtual machine that you want to restore from by using one of the following options:
 - Select a virtual machine from the list that is displayed in the Select the Virtual Machine list.
 - Click the sort button to sort the list of VMs alphabetically.
 - Type a search term in the search field. The results display in the Select the Virtual Machine list. Select a virtual machine from this results list. To clear the search term, click the "x" in the search field.

5. In the Select a backup containing the items for restore area, select the backup that you want to restore from by using one of the following options:
 - Select a backup that is displayed in the list.
 - To sort the list of backups alphabetically, click the sort button .
 - To filter the list of backups by date, Click the filter button, select the Date filtered view, select Before or After, and then select a backup date. To clear the filter. Click the filter button and select None. Dates are displayed in GMT time.

6. On the Restore Items page, browse or search for items to restore.

7. Select an item to restore by doing one of the following:
 - Double-click the item. The item displays in the Items to Restore area.
 - Drag and drop the item into the Items to Restore area.

 To remove items from the Items to Restore area, click the "x" next to the item.

8. On the Restore Options page, verify that the Restore to a browser download location setting is Yes and then click Finish.

9. Check the restore status in the Restore Monitor pane.

 To cancel a pending restore, click or tap Cancel.
10. After the download completes, click the Download button on the restored items status pane.
11. In the Save As window that displays, browse to a location to save the restored items and click Save.

Results
The restored items are downloaded to the location you specified.

Performing a directed file level restore

The Hyper-V FLR web UI directed file level restore process follows a step-by-step, wizard-like workflow similar to the browser-based file level restore process. Use the Hyper-V FLR web UI to select items to restore and then specify a destination file path for the restored items.

Procedure
1. Log in using NetWorker administrator credentials.
2. In the Select the Hyper-V Server area, select the Hyper-V server that contains the virtual machine you want to restore from by using one of the following options:
 - Select a server from the list that is displayed in the Select the Hyper-V Server list.
 - Click the sort button to sort the list of servers alphabetically.
 - Type a search term in the search field. The results display in the Select the Hyper-V Server list. Select a server from this results list. To clear the search term, click the "x" in the search field.
3. In the Select the Virtual Machine area, select the virtual machine that you want to restore from by using one of the following options:
 - Select a virtual machine from the list that is displayed in the Select the Virtual Machine list.
 - Click the sort button to sort the list of VMs alphabetically.
 - Type a search term in the search field. The results display in the Select the Virtual Machine list. Select a virtual machine from this results list. To clear the search term, click the "x" in the search field.
4. In the Select a backup containing the items for restore area, select the backup that you want to restore from by using one of the following options:
 - Select a backup that is displayed in the list.
 - To sort the list of backups alphabetically, click the sort button.
 - To filter the list of backups by date, Click the filter button, select the Date filtered view, select Before or After, and then select a backup date. To clear the filter. Click the filter button and select None. Dates are displayed in GMT time.
5. On the Restore Items page, browse or search for items to restore.
6. Select an item to restore by doing one of the following:
 - Double-click the item. The item displays in the Items to Restore area.
 - Drag and drop the item into the Items to Restore area.
 - To remove items from the Items to Restore area, click the "x" next to the item.
7. On the Restore Options page, verify that the Restore to a browser download location setting is No and then click Finish.
8. In the Select the Virtual Machine area, select the destination virtual machine by doing one of the following:

- Select a virtual machine from the list that is displayed in the Select the Virtual Machine list.
- Click the sort button to sort the list of virtual machines alphabetically.
- Type a search term in the search field. The results display in the Select the Virtual Machine list. Select a virtual machine from this results list. To clear the search term, click the "x" in the search field.

9. In the Restore to location area, browse to the wanted destination file path for the restored items by doing one of the following:

- Select a location in the list that is displayed.
- Select a location in the Restore to location list, then type a search term in the search field and click Go. The results display in the Restore to location list. To clear the search term, click the "x" in the search field.

10. Click Finish.

11. Check the restore status in the Restore monitor pane.

To cancel a pending restore, click Cancel.

Results

The items are restored to the specified destination file path.

Monitoring file level restores

You can monitor Hyper-V FLR restores from any page in the web UI by using the Status bar. Collapse or expand the Status bar to hide or display the Restore Monitor toolbar. The Restore Monitor toolbar allows you to view restore details in tile or list view and display an expanded view of a restore status.

Status bar

When collapsed, the Status bar displays condensed information about running, pending, successful, and failed restores. Single clicking or tapping the Status bar displays the Restore Monitor toolbar.

Restore Monitor toolbar

The Restore Monitor toolbar displays restore statuses in either tile view or list view. To change the view, select Change View and then select a view. To refresh the Restore Monitor with the latest restore information, click or tap Refresh. You can also filter the restore statuses to display only successful, failed, or running restores, and you can sort the restore statuses by start time, end time, progress, or status.

Single clicking or tapping a restore status displays an expanded view, which provides additional details and available actions. Only one restore status can be expanded at a time. To close the expanded view, double-click or tap the expanded item, or single-click or tap another item.

Hyper-V FLR web UI log files

If you encounter errors while using the Hyper-V FLR web UI, you can check various Hyper-V FLR web UI, NMM, and NetWorker log files.

Check the log files in the following order:
1. Hyper-V FLR UI
 - **Linux:** /nsr/logs/hyperv-flr-ui/hyperv-flr-ui.log
 - **Windows:** C:\Program Files\EMC NetWorker\nsr\logs\hyperv-flr-ui\hyperv-flr-ui.log

2. NMM RA (Windows only)
 - C:\Program Files\EMC NetWorker\nsr\logs\nsrnmmra.log
 - C:\Program Files\EMC NetWorker\nsr\logs\nsrnmmproxyra.log

3. NetWorker adaptor
 - **Linux:** /opt/nsr/nsrmq/logs/nsrmq.log
 - **Windows:** C:\Program Files\EMC NetWorker\nsr\nsrmq\logs\nsrmq.log

4. RabbitMQ message bus
 - **Linux:** /opt/nsr/rabbitmq-server-3.2.4/var/log/rabbitmq/rabbitmq.log
 - **Windows:** C:\Windows\System32\config\systemprofile\AppData\Roaming\RabbitMQ\log\rabbit.log

5. NetWorker Server
 - **UNIX:** /nsr/logs/daemon.raw
 - **Windows:** C:\Program Files\EMC NetWorker\nsr\logs\daemon.raw

6. NetWorker authentication service
 - **Linux:** /opt/emc/authc/tomcat/logs/catalina.out
 - **Windows:** C:\Program Files\EMC\Authc\tomcat\logs\catalina.out
CHAPTER 6

EMC Data Protection Add-in for SCVMM

This chapter includes the following sections:

- Overview ... 78
- How the Data Protection Add-in works with SCVMM 80
- Installation and uninstallation .. 83
- Preferences ... 87
- Data Protection Add-in overview data ... 90
- Recoveries ... 95
- Monitoring .. 100
- Troubleshooting .. 101
Overview

The EMC Data Protection Add-in for SCVMM leverages the System Center Virtual Machine Manager (SCVMM) Add-in extension support to enable NetWorker client Hyper-V virtual machine recoveries from within the SCVMM console.

The Data Protection Add-in enables you to perform NMM Hyper-V recoveries from within the SCVMM console. You can view and recover all current SCVMM-managed virtual machines that have NMM conventional backups. The Data Protection Add-in supports recoveries of Hyper-V virtual machines in cloud, cluster, host, host group, and virtual machine contexts.

You can perform recoveries of Hyper-V virtual machines to the original location or to an alternate host location.

Recoveries

The Data Protection Add-in feature set supports recovery of Hyper-V virtual machines protected by NetWorker servers. The Data Protection Add-in supports recoveries of conventional backups to the original Hyper-V server on which the virtual machine was backed up or to an alternate Hyper-V server. The Data Protection Add-in does not support recoveries of VMware virtual machines or recoveries from persistent snapshots.

The Data Protection Add-in can be used in the following SCVMM configurations:

- SCVMM console on the same host as the SCVMM server
- SCVMM console on a different host from the SCVMM server

To perform recoveries by using the Data Protection Add-in, you must have the required privileges for the client to which you will recover the virtual machine. Required privileges on page 79 provides details about SCVMM privileges. The *EMC NetWorker Administration Guide* provides details about the required NetWorker server privileges.

Backups

The SCVMM user cannot perform backups from the Data Protection Add-in. A NetWorker administrator must create and configure NetWorker client resources for the Hyper-V servers from which the SCVMM can recover virtual machines.

After the Hyper-V server has been added to a NetWorker client, the basic workflow for a scheduled backup of a virtual machine managed by SCVMM is the same as the workflow of a standard physical host. If the NetWorker administrator does not create and configure a NetWorker client for the Hyper-V server, then the NetWorker server cannot protect the SCVMM virtual machine and therefore the virtual machine is not available for recovery.

The *EMC EMC NetWorker Module for Microsoft for Hyper-V VSS User Guide* Backups chapter and the *EMC NetWorker Administration Guide* provide details on scheduling and managing backups.

Supported versions

The *EMC NetWorker Online Software Compatibility Guide* on EMC Online Support lists the most up-to-date information about the Windows Server versions that NMM supports. The Data Protection Add-in version must match the NetWorker and NMM client versions.

The Data Protection Add-in supports System Center 2012 R2 Virtual Machine Manager. The Data Protection Add-in is compatible with the following operating systems when imported into the System Center 2012 R2 Virtual Machine Manager Console:
• Windows Server 2012 (64 bit) Standard and Datacenter
• Windows Server 2012 R2 (64 bit) Standard and Datacenter
• Windows 7 SP1 or later (64 bit or 32 bit) Professional, Enterprise, and Ultimate
• Windows 8 (64 bit or 32 bit) Professional and Enterprise
• Windows 8.1 (64 bit or 32 bit) Professional and Enterprise

Software dependencies

The Data Protection Add-in requires the following software:

• The Data Protection Add-in and the NetWorker base and extended client software must be installed on the SCVMM console machine. The Data Protection Add-in must match the NetWorker and NMM client versions.
• The NetWorker and NMM 9.0 or later client software must be installed on the Hyper-V server to which the virtual machine is recovered.
• The Data Protection Add-in requires access to a NetWorker 9.0 or later server.

Required privileges

To perform recoveries, you must be a member of certain SCVMM roles and have certain privileges.

To perform recoveries, you must:

• Be a member of the SCVMM Administrator or Fabric Administrators SCVMM roles.
• Have write access to the folder where the cached data files are stored. For example: C:sers%current user%AppDataLocalEMCNetWorkerSCVMM.
• Have NetWorker directed recovery privileges, which requires the following:
 ▪ The Data Protection Add-in machine is a client of the NetWorker server that contains the backup information. This administering client can be a different platform from the source and destination clients.
 ▪ Use the local root or Administrator account to start the recovery. Ensure the user account is a member of one of the following:
 – A customized User Group with the following privileges on the NetWorker server:
 Remote Access All Clients
 Operate NetWorker
 Monitor NetWorker
 Operate Devices and Jukeboxes
 Backup Local Data
 Recover Local Data
 Recover Remote Data
Installation and configuration overview

To install the Data Protection Add-in, an SCVMM administrator and each user must perform required steps.

Procedure

1. An SCVMM administrator must perform the following steps:
 a. Installing SCVMM and the SCVMM console on page 83
 b. Installing the Data Protection Add-in on page 83

2. Each user must perform the following steps:
 a. Importing the Data Protection Add-in on page 84
 b. Activating the Data Protection Add-in on page 85

After you finish

To uninstall the Add-in, an SCVMM administrator and each user must perform the steps that are described in Uninstalling the Data Protection Add-in on page 85.

How the Data Protection Add-in works with SCVMM

The following figure illustrates the Data Protection Add-in architecture.

Figure 12 Data Protection Add-in architecture

The NetWorker client and NMM client software must be installed on each Hyper-V physical host. The SCVMM console can be installed on a separate machine or on the SCVMM server. However, the NetWorker client must be installed on the SCVMM console machine.
Note

The EMC Data Protection Add-in uses a host name, as displayed on the SCVMM console, when it tries to identify corresponding NetWorker clients on the NetWorker servers. If the host name in SCVMM does not match its actual machine name, then the Add-in is unable to find the corresponding NetWorker Client. Ensure that the host names in SCVMM match their actual machine names.

Workflows overview

The following sections describe common workflows for the Data Protection Add-in.

Initialize the SCVMM console or change context

When you launch the SCVMM console or change context within the console, the Data Protection Add-in does the following:

Procedure

1. Accesses the SCVMM server to obtain a list of virtual machines for the context you selected.
2. Displays virtual machines for the selected context that have been backed up on servers in the Preferred NetWorker servers list.

Refresh the Data Protection Add-in display

When you click the Refresh button on any page in the Data Protection Add-in, the Data Protection Add-in does the following:

Procedure

1. Accesses the SCVMM server to obtain a list of all hosts.
2. Accesses the NetWorker server to obtain a list of all clients and save sets.
3. Accesses the SCVMM server to obtain a list of all virtual machines in the current context.
4. Displays the updated protection information on the Overview page and virtual machines available for recovery on the Recover page.

Perform a recovery

When you perform a recovery, the following occurs:

Procedure

1. The Data Protection Add-in passes the virtual machine, backup time, and destination options you selected to the NWRecover service. The NWRecover service starts the recovery process.
2. The NWRecover service invokes a remote agent on the Hyper-V server and passes the required information.
 The NWRecover service posts recover messages to the Data Protection Add-in Monitor page
3. The remote agent performs the requested recovery.
 During the recovery process, the NWRecover service updates the log shown in the Monitor page as well as the Windows Event log under Applications and Services > NetWorker Recovery Service.
4. The NWRecover service posts the recover success message in the monitor log and the Windows event log.

GUI overview

The Data Protection Add-in consists of the Overview, Preferences, Recover, and Monitoring pages.

- **Overview** - Displays the protection status for all virtual machines in the current SCVMM context.
- **Preferences** - Allows you to specify NetWorker servers, set the refresh rate, and set the debug level.
- **Recover** - Allows you to perform recoveries and view virtual machines available for recovery.
- **Monitoring** - Allows you to view in-progress and completed operations.

After you import the Data Protection Add-in, when you select the All Hosts or Cloud scope in the SCVMM console, the EMC Data Protection Add-in button displays in the SCVMM ribbon within the VMs and Services context.

If you select a non-supported scope (within the VMs and Services context), the Data Protection Add-in button is disabled.

SCVMM user roles and allowed actions

The Data Protection Add-in is cloud and tenant-aware, so you can only recover virtual machines to which you have access. You cannot direct a recovery to a Hyper-V server to which you do not have access.

The following table lists the supported SCVMM User Roles and the actions that the Data Protection Add-in allows for each supported role.

<table>
<thead>
<tr>
<th>Role</th>
<th>Actions allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Administrator (Delegated Administrator)</td>
<td>Can see all virtual machines, hosts, and clouds. Can recover all virtual machines managed by SCVMM to original and alternate locations.</td>
</tr>
<tr>
<td>Tenant Administrator</td>
<td>Can see and recover virtual machines within the private cloud they manage. Only recovery to original location is supported. On the Recover page, unable to see the Hyper-V Host and Recover Destination columns.</td>
</tr>
<tr>
<td>Read-Only Administrator</td>
<td>Can see the virtual machines and hosts within the private cloud they manage. No recovery operations are allowed.</td>
</tr>
<tr>
<td>Application Administrator (Self-Service Administrator)</td>
<td>Can see and recover virtual machines within the private cloud they manage. Only recovery to original location is supported. On the Recover page, unable to see the Hyper-V Host and Recover Destination columns.</td>
</tr>
</tbody>
</table>

Supported scopes and contexts

The Data Protection Add-in supports the following SCVMM scopes:

- Cloud
- Cluster
Installation and uninstallation

This section describes the Data Protection Add-in required components and the order in which they must be installed and configured.

The SCVMM administrator must install the components in the following order:

1. SCVMM and SCVMM console
2. SCVMM update rollups
3. NetWorker base client kit
4. NetWorker extended client kit
5. Data Protection Add-in

Note

The NetWorker base and extended client kits must be installed on the SCVMM console machine and must be the same version as the Data Protection Add-in.

After the SCVMM administrator has installed these components, each user imports and activates the Data Protection Add-in.

To uninstall the Data Protection Add-in, each user removes the Data Protection Add-in from the SCVMM console, and an SCVMM administrator uninstalls the Data Protection Add-in.

Installing SCVMM and the SCVMM console

Download and install SCVMM from the Microsoft website. Install the SCVMM console so that it is available for all users. This installation requires system administrator privileges.

Installing the Data Protection Add-in

To install the Data Protection Add-in, you access the installation files from a DVD disk or EMC Online Support. To install the Data Protection Add-in on the SCVMM server, you must have local administrator privileges.

NetWorker client packages and the Data Protection Add-in must be installed on the SCVMM console host. The Data Protection Add-in requires the NetWorker base client and extended client packages to be installed on the SCVMM console machine before installing the Add-in itself. The Data Protection Add-in must match the NetWorker and NMM client versions. The *EMC NetWorker Installation Guide* provides details about the NetWorker client package installations.

Because the Data Protection Add-in does not have built-in foreign language support, only install the English language pack on the NetWorker client for use with the SCVMM add-in.

Procedure

1. To access the Data Protection Add-in software from a local DVD disk:
 a. Log in as an administrator or equivalent on the NetWorker client.
b. Insert the Data Protection Add-in DVD disk into the DVD drive.

c. Run **EMC_Data_Protection_UI_Addin_for_SCVMM.msi** directly from the
 DVD.

d. Accept the default values during the installation.

2. To access the Data Protection Add-in software from EMC Online Support:

 a. Log in as administrator or equivalent on the NetWorker client.

 b. Browse to EMC Online Support (http://support.emc.com).

 c. Browse to the Downloads for NetWorker Module for Microsoft page.

 d. Download the 32-bit or 64-bit Data Protection Add-in software Zip file to a
temporary folder that you create.

 e. Extract the Zip file to the temporary folder.

 f. Run **EMC_Data_Protection_UI_Addin_for_SCVMM.msi**.

 g. Accept the default values during the installation.

Results

The installer places a Data Protection Add-in Zip file in the public user documentation
folder and installs the required NWRecover Service. The NWRecover Service automatically
starts during the installation process.

The default installation path for the Data Protection Add-in Zip file is:
C:\Users\Public\Documents\EMC NetWorker\nsr\addins\VMM_DataProtection\.
If you encounter any issues while installing or importing the
Data Protection Add-in, then ensure you have read and write permission for all folders in
this path.

Make note of the Data Protection Add-in .zip file installation path as it is used in
Importing the Data Protection Add-in on page 84. The default installation path for the
NWRecover Service is:
C:\Program Files\EMC Networker\nsr\addins\VMM_DataProtection.

Importing the Data Protection Add-in

Each Data Protection Add-in user must import the Data Protection Add-in. The users must
have write access to the folder where the cached data files are stored. For example: C:\
Users\%current user%\AppData\Local\EMC\NetWorker\SCVMM.

Procedure

1. Launch the SCVMM console and connect to a Virtual Machine Manager server. The
 console opens.

2. In the workspaces pane, click **Settings**.

3. In the navigation pane, click **Console Add-ins**.

4. If a previous version of the Data Protection Add-in exists, select it and click **Remove** on
 the SCVMM ribbon.

5. On the SCVMM ribbon, click **Import Console Add-in**.

6. In the **Import Console Add-in** wizard, browse to the folder in which you installed the
 Data Protection Add-in Zip file.

7. Select **EMC.DP.ScvmAddIn.zip** and click **Open**. For example: C:\Users\Public
 \Documents\EMC NetWorker\nsr\addins\VMM_DataProtection.
8. To continue installing, select the checkbox and click **Next**.
9. Click **Finish** and then click **Close** to close the **Jobs** window that displays.

Results

If an error message displays, delete the pre-existing add-in folder. For example: `C:\Program Files\Microsoft System Center 2012\Virtual Machine Manager\bin\AddInPipeline\AddIns\<domain_username>`.

Activating the Data Protection Add-in

After you install SCVMM, the SCVMM console, the SCVMM update rollups, and the Data Protection Add-in, you must activate the Data Protection Add-in.

Procedure

1. In the workspace pane of the SCVMM console, click **VMs and Services**.
2. In the navigation pane, select a host or cluster.
3. On the SCVMM ribbon, click **EMC Data Protection**.

After about 5-10 seconds, the main content area of the console will be replaced by the Data Protection Add-in, as shown in the following figure:

![Data Protection Add-in Console](image)

When a user launches the Data Protection Add-in for the first time, the **Preferences** page displays. After initial configuration and refresh, subsequent launches of the Add-in display the **Overview** page first.

Uninstalling the Data Protection Add-in

To uninstall the Data Protection Add-in, each user must remove the Data Protection Add-in from the SCVMM console, and an SCVMM administrator must uninstall the Data Protection Add-in. If no users will perform other NetWorker operations on this machine,
you can also uninstall the NetWorker software. These tasks can be performed in any order.

Removing the Data Protection Add-in from the SCVMM console

Each user must remove the Data Protection Add-in from the SCVMM console. Removing the Data Protection Add-in from the SCVMM console removes all components that are copied to the SCVMM AddIn folder during the import process, but not the originally downloaded Data Protection Add-in .zip file itself.

Note

Removing the Data Protection Add-in only affects individual users. Other users who imported the Add-in are not affected.

Procedure

1. In the SCVMM console, click the Settings workspace.
2. Click the Console Add-ins setting.
3. In the list of installed Add-ins, select EMC Data Protection Add-in.
4. On the top ribbon, click Remove.
5. On the confirmation window that displays, click Yes.

After you finish

The Data Protection Add-in creates persistent data cache files during the refresh operation. These files are created for each user. If a user removes the Add-in and is not expected to upgrade or otherwise re-import the add-in in the future the files can be manually removed from the following folder: C:\User\<user name>\AppData \Local\EMC\NetWorker\SCVMM.

Uninstalling the Data Protection Add-in by using Windows Program and Features

An SCVMM administrator must uninstall the Data Protection Add-in from the SCVMM server. Uninstalling the Data Protection Add-in ensures the Data Protection Add-in (.zip file) is removed from the SCVMM console machine and ensures that the Data Protection service is stopped and uninstalled.

Note

This step affects all users who imported the Data Protection Add-in. If the Data Protection Add-in is uninstalled, no users are able to perform a recovery by using the Data Protection Add-in. Verify that each SCVMM console user has removed the Data Protection Add-in before uninstalling.

Procedure

1. For Windows Server 2012 or Windows 8 or later: click Control Panel and then click Programs and Features.
2. For Windows 7 or earlier: click Control Panel and then click Uninstall a program.
3. Select EMC Data Protection UI Addin for SCVMM.
4. Click Uninstall.
Upgrading the Data Protection Add-in

To upgrade the Data Protection Add-in, you must complete the uninstallation procedures to uninstall the current version and then complete the installation procedures to install the new version.

Before you begin

Before upgrading the Data Protection Add-in, ensure that the NetWorker and NMM client software and the NetWorker Server software are compatible with the Data Protection Add-in. The Data Protection Add-in version must match the NetWorker and NMM client versions. The *EMC NetWorker Online Software Compatibility Guide* on EMC Online Support lists the most up-to-date information about supported versions.

Procedure

1. Obtain the new Data Protection Add-in installer MSI file from the EMC Support site.
2. For all users, remove the existing Data Protection Add-in from the SCVMM console.
3. Follow the steps that are described in Uninstalling the Data Protection Add-in on page 85.
4. Follow the steps that are described in Installing the Data Protection Add-in on page 83.
5. Follow the steps that are described in Importing the Data Protection Add-in on page 84.
6. Follow the steps that are described in Activating the Data Protection Add-in on page 85.
7. In the Upgrade Successful window, click OK.
8. Click Refresh to repopulate the Data Protection Add-in.

Preferences

After completing the installation process, you must configure the Data Protection Add-in to access the NetWorker servers that contain virtual machine backups for recovery. You can also set the refresh frequency and specify the logging debug level. After making any configuration changes to the SCVMM environment, perform a Refresh operation in the Data Protection Add-in to ensure that the Add-in is displaying current information.
Adding NetWorker servers

You can search for virtual machine backups on multiple NetWorker servers. Contact the NetWorker administrator to learn which NetWorker servers protect the virtual machines you manage, and then add them to the Data Protection Add-in.

Procedure

1. In the workspaces pane of the SCVMM console, click **VMs and Services**.
2. In the navigation pane, select the host or cloud you want to manage.
3. In the SCVMM ribbon, click **EMC Data Protection**.
4. In the Data Protection Add-in, click **Preferences**.
5. In the text box next to the **Preferred NetWorker servers** list, type the FQDN or IP address of a NetWorker Server and click **Add**.

 Note

 The Data Protection Add-in does not support IPv6 addresses.

 The NetWorker FQDN or IP address displays in the Preferred NetWorker servers list.

6. In the notification that displays, click **OK**.
7. Follow the directions in the notification.
8. Click **Refresh** to view the newly added NetWorker server virtual machine protection status on the Overview page and the available virtual machine backups on the Recover page.
Note

If adding more than one NetWorker server at a time, it is recommended to add all servers before starting the Refresh operation.

Removing NetWorker servers

Procedure
1. In the workspaces pane of the SCVMM console, click **VMs and Services**.
2. In the navigation pane, select the host or cloud you want to manage.
3. In the SCVMM ribbon, click **EMC Data Protection**.
4. In the Data Protection Add-in, click **Preferences**.
5. In the **Preferred NetWorker servers** list, select a server and click **Remove**.

 The Data Protection Add-in automatically performs a Refresh operation to display virtual machine data for the remaining NetWorker servers.

Setting the refresh interval

On the Preferences page, the Data Protection Add-in provides two options for scanning the SCVMM environment for changes:

- **Use manual refresh only** - This is the default setting. When you select this option, you must manually scan for changes by clicking the Refresh button on any Data Protection Add-in page. With this setting, the Data Protection Add-in does not scan for changes automatically.
- **Use specified refresh interval** - You can specify the interval at which the Data Protection Add-in automatically refreshes the data. When you select this option, type a refresh interval and click anywhere in the SCVMM console to apply the change. The refresh rate should correspond to how often a virtual machine is backed up in the environment and the amount of time a refresh process takes to complete. If the refresh process does not complete within the interval you specify, lengthen the interval accordingly.

Including debug output for logging purposes

You can choose to include debug output in log files. This can be especially helpful for troubleshooting purposes. To include debug level output, on the Preferences page, select the **Include debug level output** checkbox.

Using multiple NetWorker Servers that define the same clients and virtual machine save sets

The Data Protection Add-in learns about protected virtual machines by querying the NetWorker servers that are specified on the Preferences page. If there is conflicting data regarding a Hyper-V server and its virtual machine protection because the Hyper-V server is a client of multiple NetWorker servers, the Data Protection Add-in might display inconsistent data.

Therefore, if you are using multiple NetWorker servers that define the same Hyper-V clients and virtual machine save sets, it is best to change the Preference page to one NetWorker server at a time. This reduces NMM data protection metric inconsistency on the Overview page and protected virtual machine listings on the Recover page.

In scenarios where the Preferences page does include NetWorker servers that define the same Hyper-V clients and virtual machine save sets, then the Data Protection Add-in
arbitrarily chooses information from one NetWorker server if conflicts exist. This prevents scenarios where a virtual machine is mis-counted for protection metrics or shows twice on the Recover page.

Data Protection Add-in overview data

The Overview page summarizes the current NMM data protection metrics for the managed virtual machines in the currently selected SCVMM context. For Administrator, Fabric Administrator, and Read-Only Administrator user roles, the Data Protection Add-in displays virtual machine protection status. For Tenant Administrator and Application Administrator (Self-Service Administrator) user roles, the Data Protection Add-in displays virtual machine backup status.

Overview page for Administrator, Fabric Administrator, and Read-Only Administrator user roles

For Administrator, Fabric Administrator, and Read-Only Administrator user roles, the Overview page displays multiple sub-panes:

- **Clouds, Clusters, Hosts, and Virtual machines sub-panes:** These sub-panes list the number of clouds, clusters, hosts, and virtual machines the user role manages within the currently selected SCVMM context.

- **Configured for protection:** This sub-pane provides protection characteristics for the virtual machines that are protected on the NetWorker servers that are listed on the Preferences page.

The pie chart provides the following data about virtual machines:

VMs excluded from protection

These virtual machines are currently listed in the NSR_EXCLUDE_COMPONENTS attribute for a NetWorker client resource and not protected by another client resource.

VMs not protected

These virtual machines are not configured for a scheduled backup as part of a NetWorker client resource and not explicitly excluded for backup.

VMs protected

These virtual machines are configured for scheduled backup as part of a NetWorker client resource.

A virtual machine is protected when it is configured for scheduled backups as part of a NetWorker client resource. A virtual machine that is configured for scheduled backups but does not have existing backups is considered protected. Conversely, a virtual machine that is not configured for scheduled backups but has existing backups is not considered protected.

Note

The Data Protection Add-in is unable to distinguish between multiple virtual machines with the same name on the same host. If a host has multiple virtual machines with the same name, and any of these virtual machines are backed up, the Data Protection Add-in shows all the virtual machines as backed up.

The following figure shows the Data Protection Add-in Overview page for Administrator, Fabric Administrator, and Read-Only Administrator user roles.
Figure 14 Data Protection Add-in Overview page for Administrator, Fabric Administrator, and Read-Only Administrator user roles

When you position the mouse over a protection category in the pie chart, a tooltip lists the first 10 virtual machines for that protection category. If there are more than 10 virtual machines in that category, the list is truncated with an ellipsis. To view the full list, click the desired section of the pie chart. If the virtual machine name is more than 30 characters in length, the tooltip truncates the virtual machine name with an ellipsis. The following figure shows the pie chart and tooltip for Administrator, Fabric Administrator, and Read-Only Administrator user roles.

Figure 15 Virtual machine Protection Details tooltip for Administrator, Fabric Administrator, and Read-Only Administrator user roles
When you click a protection category in the pie chart, the virtual machine Protection Details window displays. This window contains a table that lists the name, host, and ID for each virtual machine in the selected protection category. To copy data for all the virtual machines to the clipboard, click the Copy All to Clipboard button. To copy data for specific virtual machines, select the desired rows in the table and click the Copy Selected to Clipboard button. You can press Ctrl or Shift to select multiple rows, similar to other Windows applications.

Figure 16 Virtual machine Protection Details window for Administrator, Fabric Administrator, and Read-Only Administrator user roles

Overview page for Tenant Administrator and Application Administrator user roles

For Tenant Administrator and Application Administrator user roles, the Overview page displays multiple sub-panes:

- **Clouds, Clusters, and Hosts sub-panes:**
 These sub-panes display "NA", since Tenant Administrator and Application Administrator user roles do not have access to other clouds, clusters, or hosts.

- **Virtual machines sub-panes:**
 This sub-pane lists the number of virtual machines that the Tenant Administrator and Application Administrator user roles can access.

The pie chart provides the following data about virtual machines:

VMs not backed up

These virtual machines are not currently backed up as part of a NetWorker client resource.

VMs backed up

These virtual machines are currently backed up as part of a NetWorker client resource.
Note

The Data Protection Add-in is unable to distinguish between multiple virtual machines with the same name on the same host. If a host has multiple virtual machines with the same name, and any of these virtual machines are backed up, the Data Protection Add-in shows all the virtual machines as backed up.

The following figure shows the Data Protection Add-in Overview page for Tenant Administrator and Application Administrator user roles.

Figure 17 Data Protection Add-in Overview page for Tenant Administrator and Application Administrator user roles

When you position the mouse over a backup status category in the pie chart, a tooltip lists the first 10 virtual machines for that backup status category. If there are more than 10 virtual machines in that category, the list is truncated with an ellipsis. To view the full list, click the desired section of the pie chart. If the virtual machine name is more than 30 characters in length, the tooltip truncates the virtual machine name with an ellipsis. The following figure shows the pie chart and tooltip for Tenant Administrator and Application Administrator user roles.
Figure 18 Virtual Machine Backup Status tooltip for Tenant Administrator and Application Administrator user roles

Virtual Machine Backup Status

When you click a backup status category in the pie chart, the virtual machine Protection Details window displays. This window contains a table that lists the virtual machine name and virtual machine ID for each virtual machine in the selected backup status category. To copy data for all the virtual machines to the clipboard, click the Copy All to Clipboard button. To copy data for specific virtual machines, select the desired rows in the table and click the Copy Selected to Clipboard button. You can press Ctrl or Shift to select multiple rows, similar to other Windows applications.

Figure 19 Virtual machine Protection Details window for Tenant Administrator and Application Administrator user roles
Recoveries

The Recover page displays a list of all VMs managed by SCVMM that are backed up by a NetWorker server in the Preferred Servers list and in the current selected context and match the date filtering criteria. When you access the Recover page for the first time, click Refresh to populate the grid with backups performed on the VMs in the current context.

NOTICE

To recover backups that were created using an NMM release earlier than 9.0, click **Start** > **EMC NetWorker** > **NetWorker Tools** > **Restore previous NMM release backups** to start the NetWorker Module for Microsoft GUI. Browse the backups and perform the recovery from the GUI that appears.

Figure 20 Data Protection Add-in for SCVMM Recover page

If you make a change in the SCVMM environment, such as adding a VM, adding a NetWorker server on the Preferences page, or performing a redirected recovery, click Refresh to update the list of VMs on the Recover page.

When performing VM recoveries by using the Data Protection Add-in, consider the following:

- The Data Protection Add-in supports recoveries only from conventional backups. You cannot use the Data Protection Add-in to recover virtual machines from NMM Hyper-V persistent snapshots.
- The Data Protection Add-in is unable to distinguish between multiple VMs with the same name on the same host. If a host has multiple VMs with the same name, the Data Protection Add-in shows incorrect recovery options.
- The Data Protection Add-in does not support recoveries of VMs that have differencing disks.
- The Data Protection Add-in does not perform multiple operations at the same time, such as recovering multiple VMs or refreshing the list of VMs during a recovery. The Recover and Refresh buttons are disabled while a recovery or refresh operation is in progress.

- The recovery progress log messages are reported in the following locations:
 - On the Monitoring page in the Data Protection Add-in.
 - On the Hyper-V server where the actual recovery is performed.
 - Open the Windows Event Viewer on the machine that is hosting the SCVMM console. To access the event logs, navigate to Application and Services Logs > Networker Recovery Service.

- For highly available VMs in cluster configurations, recovery to the original location is always to the active node of the cluster, regardless of the existing VM physical host location. Before starting the recovery, confirm that the cluster active node is the same as the VM physical host. After the recovery is complete, you might need to use Microsoft Cluster Manager to make the VM highly available again.

 Note

 If this practice is not followed, the resulting conflict of the same VM on different nodes can be very difficult to repair and might require a cluster reboot.

- For highly available VM recoveries, when you recover to a cluster physical node rather than to the cluster virtual server, you must use Microsoft Cluster Manager to make the VM highly available after the recovery completes.

- For recoveries of VMs on Hyper-V servers over SMB 3.0 configurations, the Data Protection Add-in supports recovery of stand-alone and clustered configurations.

 Note

 Because the Data Protection Add-in performs Hyper-V recoveries by using NMM, the NMM Hyper-V considerations described in the documentation also apply to performing Hyper-V recoveries by using the Data Protection Add-in.

Viewing available virtual machines

The **Recover** page displays a list of all virtual machines that match the following criteria:

- Reside within the currently selected context of the SCVMM navigation pane
- Have been backed up by a NetWorker server in the **Preferred Servers** list
- Have at least one backup date that matches the current date filter

You can sort the list by **VM Name, Hyper-V Host**, or **Availability**.

By default, the **Recover** page shows all virtual machines that were backed up on or before the current date. You can filter the virtual machines by selecting one of the date criteria options and choosing a date on the calendar. Only virtual machines with backup times that match the specified date filtering criteria are displayed. If you select criteria that results in no matching backup dates for a particular virtual machine, then that virtual machine does not display in the table.
Recovering a virtual machine to the original location

The recovery operation runs on the Hyper-V server that is hosting the virtual machine or, if the virtual machine is highly available, on the active node of the cluster. The Monitoring page displays the status of the recovery.

Procedure

1. In the SCVMM console, ensure the Home tab is selected.
2. In the workspaces pane of the SCVMM console, click VMs and Services.
3. In the navigation pane, select the host or cloud that contains the virtual machine you want to recover.
4. On the SCVMM ribbon, click EMC Data Protection.
5. In the Data Protection Add-in, click the Recover tab.
7. Select the Date Backed Up cell, click again to activate the drop-down list, and select the backup date and time.
8. Click the Recover button.

Redirected recoveries

The Data Protection Add-in supports redirected recovery of virtual machines to an alternate host to which you have access in the SCVMM console, provided the host is protected with NetWorker Server.

In the SCVMM host, the virtual machine placement path properties contain one or more paths. The redirected recovery location is the first location in this list.

The Data Protection Add-in recovers to the default SCVMM placement path that the Hyper-V administrator configured during the Hyper-V role installation.

The Data Protection Add-in does not support redirected recoveries of Hyper-V backups that were taken before an NMM 8.2 upgrade.

The Data Protection Add-in supports redirected recoveries to a host running the same or later operating system version. For example: the Data Protection Add-in supports redirected recovery from a Windows Server 2012 R2 source host to a Windows Server 2012 R2 destination host, but the Data Protection Add-in does not support redirected recovery from a Windows Server 2012 R2 source host to a Windows Server 2012 destination host.

The Data Protection Add-in does not support virtual machine redirected recovery to an SMB path location. If a virtual machine placement path property specifies a path to an SMB location as the first item in the path list, then a redirected virtual machine recovery to this Hyper-V server is not supported.

Virtual machine IDs after redirected recovery

NMM assigns a new virtual machine ID in certain redirected recovery scenarios. The redirected recovery continues normally, regardless of whether NMM assigns a new ID or uses the existing ID. If NMM assigns a new ID during redirected recovery, then the virtual machine appears in both the source and destination hosts.

The following table provides details about whether NMM assigns the existing virtual machine ID or a new virtual machine ID during a redirected recovery:
Table 14 Virtual machine IDs after redirected recovery

<table>
<thead>
<tr>
<th>Source operating system</th>
<th>Destination host</th>
<th>Destination virtual machine ID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2008 R2</td>
<td>Windows Server 2008 R2</td>
<td>Existing</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
<tr>
<td>Windows Server 2008 R2</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
<tr>
<td>Windows Server 2012</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
<tr>
<td>Windows Server 2012</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
<tr>
<td>Windows Server 2012 R2</td>
<td>Windows Server 2012 or 2012 R2</td>
<td>New</td>
</tr>
</tbody>
</table>

File paths for redirected recovery virtual machines and VHDs

For a redirected recovery, the Data Protection Add-in uses the SCVMM placement path property as the default location for recoveries. The Data Protection Add-in extends the default SCVMM placement path property value by appending the virtual machine name and the recovery time (vmname_timestamp) to create a unique subfolder.

If you recover multiple virtual machines with the same name on different source hosts to the same destination host, the Data Protection Add-in recovers these virtual machines to two different folders with unique subfolders by appending vmname_timestamp to the folder names. For example, if two virtual machines that are both named Virtual_Machine are recovered to the default SCVMM placement path property "C:\ProgramData\Microsoft\Windows\Hyper-V", the virtual machines are recovered to the following unique subfolders:

- C:\ProgramData\Microsoft\Windows\Hyper-V \Virtual_Machine_20140917143500\1
- C:\ProgramData\Microsoft\Windows\Hyper-V \Virtual_Machine_20140917152205\2

If the virtual machine has multiple disks with the same name, the Data Protection Add-in recovers these disks to separate folders. For example, if a virtual machine with two VHDs that are both named DualDisk.vhd are recovered to the default SCVMM placement path property "C:\ProgramData\Microsoft\Windows\Hyper-V", the virtual machines are recovered to the following unique subfolders:

- C:\ProgramData\Microsoft\Windows\Hyper-V \DualDisk_20140625133500\1\DualDisk.vhd
- C:\ProgramData\Microsoft\Windows\Hyper-V \DualDisk_20140625133500\2\DualDisk.vhd
Performing a redirected recovery

Procedure
1. Take the original virtual machine offline to avoid conflicts during the recovery operation.
2. In the SCVMM console, ensure the Home tab is selected.
3. In the workspaces pane of the SCVMM console, click VMs and Services.
4. In the navigation pane, select the host or cloud that contains the virtual machine you want to recover.
5. On the SCVMM ribbon, click EMC Data Protection.
6. In the Data Protection Add-in, click the Recover tab.
8. Select the Date Backed Up cell, click again to activate the drop-down list, and select the relevant backup date and time.
9. Select the Recover Destination cell, click again to activate the drop-down list, and select the destination host. The Recover Destination drop-down list shows physical Hyper-V hosts that are NetWorker clients and that are visible in SCVMM for the current user. The Recover Destination drop-down list does not list the NetWorker virtual server clients representing the clusters.
10. Click the Recover button.
11. If an Action Needed message displays, click OK to clear the message.
12. Confirm the virtual machine is successfully recovered by verifying that the virtual machine appears in the hypervisor on the Hyper-V server where you recovered the virtual machine.
13. If the Action Needed message displayed, delete the original virtual machine from its original host by using the SCVMM console. Alternatively, delete the virtual machine by using Hyper-V Manager or PowerShell, and then refresh the SCVMM console.
14. In the navigation pane of the SCVMM console, right-click the destination host and click Refresh Virtual Machines.
15. If a new ID was assigned to the virtual machine as described in Virtual machine IDs after redirected recovery on page 97, in the navigation pane of the SCVMM console, right-click the source host and click Refresh Virtual Machines.
16. Ask the NetWorker administrator to perform a backup of the virtual machine from its new Hyper-V host.

Viewing virtual machines after a redirected recovery

If you perform a redirected recovery of a virtual machine to a Hyper-V host, then the virtual machine will not meet the criteria that are listed in Viewing available virtual machines on page 96 until after a new backup of the virtual machine is completed. Therefore, the Recover page does not immediately display the redirected virtual machines. After you perform a redirected recovery for a virtual machine, ask the
NetWorker administrator to perform a backup of the Hyper-V host where the virtual machine currently resides.

Because the Data Protection Add-in displays only backups for the current Hyper-V host of the virtual machine, if you want to recover a virtual machine from a backup that was taken before a redirected recovery, you must use NMM.

Recovering a deleted virtual machine

The Data Protection Add-in does not support recovering virtual machines that have been deleted from SCVMM. The NetWorker administrator must perform the recovery by using NMM.

Monitoring

The Monitoring page provides information about Data Protection Add-in events and operations.

The Monitoring page displays:

- Status of recovery operations in progress
- Details of queries to the NetWorker servers and the SCVMM server
- All logging entries from previous uses of the Data Protection Add-in (if any)

The Monitoring page shows 3 columns, all of which can be sorted: DateTime, EventType, Message.

The monitor log information is updated in real-time as operations occur. To manually scan for updated protection information, click Refresh.

You can export the log file by clicking Export at the bottom of the Monitoring page. NMM logs are stored on the destination host, where the virtual machine is restored. The
Troubleshooting

The following section includes information about how to resolve general issues you might encounter while using the Data Protection Add-in. The *EMC NetWorker Administration Guide* and the *EMC NetWorker Module for Microsoft Administration Guide* provide additional troubleshooting details.

Recovered virtual machine does not start

If a recovered virtual machine does not start, perform the following steps:

Procedure

1. Select the recovered virtual machine, then right-click the virtual machine and select *Discard Saved State*.
2. Right-click the recovered virtual machine and then select *Properties*.
3. In the Properties dialog box, click *Hardware Configuration* and verify the Network Adapter settings of the virtual machine.

Installation fails due to access issue

When you install the Data Protection Add-in, you need access to the following path:
`C:\Users\Public\Documents\EMC NetWorker\nsr\addins\VMM_DataProtection`

Note

This path applies to environments in which the system drive is C:.

Solution

Before you install the Data Protection Add-in, verify that you have read/write access permissions to the paths noted above.

The Data Protection Add-in for SCVMM displays an incorrect NetWorker Server version

If the NetWorker Server software is updated, the Data Protection Add-in for SCVMM displays the previous version number until you remove and re-add that NetWorker server in the Add-in.

Importing fails due to access issue

To import the Data Protection Add-in, you need access to the following paths:
`C:\Program Files\Microsoft System Center 2012 R2\Virtual Machine Manager\bin\AddInPipeline\AddInViews` and `C:\Program Files`
Note
These paths apply to environments in which SCVMM was installed in the default location of C:\Program Files):

If you do not have access to the required paths, you receive the following error:

The assembly Microsoft.SystemCenter.VirtualMachineManager.UIAddIns.dll referenced by the add-in assembly EMC.BRS.ScvmmAddIn.AddInView could not be found in the add-in package. Ensure that this assembly was included with the add-in package.

Solution
Before you import the Data Protection Add-in, verify that you have read/write access permissions to the paths noted above.

Virtual machine attributes might display incorrect values

On the Monitoring page of the Data Protection Add-in, the VM Availability attribute might occasionally show an incorrect value.

To show the correct information:

1. In the SCVMM navigation pane, refresh the virtual machine.
2. In the Data Protection Add-in, click Refresh.

Redirected recovery appears to succeed but no virtual machine appears in Hyper-V Manager

If a redirected recovery appears to succeed but no virtual machine appears in Hyper-V Manager, the network of the target host might be incompatible. For example, if the target host is in a non-trusted domain, redirected recovery to this target host fails.

If the network of the target host is incompatible, then the virtual machine is disconnected from the network. The recovery succeeds according to the Data Protection Add-in monitor log and the nsrrmsv.raw log, and the virtual machine files are stored on the target host and volume, but Hyper-V Manager does not display or recognize the virtual machine.

Solution
Reconnect the existing switch of the host by using the SCVMM GUI or by using the following PowerShell command:

```
$sw=Get-virtual machineswitch;get-vm -Id <vmID> | Get-VMNetworkAdapter | Connect-VMNetworkAdapter -SwitchName $sw.Name
```

After reconnecting the existing switch, re-attempt the redirected recovery.

Checks for redirected recovery failures

Redirected recovery of a virtual machine might fail due to virtual machine network or saved state incompatibility between the original Hyper-V host and the target Hyper-V
Avoid virtual machine names with the same name within an SCVMM context

The Data Protection Add-in primarily uses the virtual machine name, as displayed in Hyper-V Manager or Failover Cluster Manager, as an identifier for the virtual machines. If multiple virtual machines have the same name in the same SCVMM context, then the Add-in is unable to distinguish between the virtual machines. Although not required, it is considered best practice for virtual machine names to be unique.

Cluster virtual machine backups do not display on the Recover page

If a cluster virtual machine backup does not display on the Recover page, check that the cluster is configured as highly available in Microsoft Cluster Manager.

If a virtual machine is removed from Microsoft Cluster Manager and is no longer shown by PowerShell as highly available, the backups for that virtual machine do not display on the Recover page.

Unable to recover if 'localhost' used as NetWorker server name

The use of 'localhost' as a NetWorker server name in the Data Protection Add-in Preferences page might cause recoveries to fail. Replace the 'localhost' entry with any of the following: 127.0.0.1, the machine's actual IP address (IPv4), or the machine's fully qualified domain name.

Sample error message for failed recovery:

```
connect to resdb database on localhost 102357:nsrsnap_vss_recover:Unknown Application
Information parameter: PROXY, may not be supported 38006:nsrsnap_vss_recover:Program not
registered. 102803:nsrsnap_vss_recover:Terminating restore due to error.
50338:nsrsnap_vss_recover:  usage: nsrsnap_vss_recover [options] 80291:nsrsnap_vss_recover:
[-s server] 50422:nsrsnap_vss_recover:          [~S SSID] or [-I -]
80293:nsrsnap_vss_recover:          [-S SSID] or [-I -]
```

Redirected recovery is not supported when the virtual machine name or virtual machine configuration path contains special characters

NMM Hyper-V restricts the use of special characters in virtual machine names and virtual machine configuration paths.

NMM Hyper-V supports the following characters in virtual machine names and virtual machine configuration paths, including stand-alone, CSV, and SMB 3.0 configurations:

- Alphanumeric (A–Z, a–z, 0–9)
- . [] { } + = ~ ! # $ % ^ & ()
- Space

When you try to recover a Hyper-V save set, virtual machine name, or file path that contains a character that is not listed above, the Data Protection Add-in checks the name and path of the virtual machine objects and displays a warning message stating that the...
virtual machine contains unsupported characters and cannot be recovered to an alternate location.

You can use SCVMM to perform the following workaround:

Procedure

1. Recover the virtual machine to the original location of the backup.
2. Use SCVMM to export the virtual machine to a temporary location.
3. Copy the virtual machine files to an appropriate location on the target host.
4. Use SCVMM to import the virtual machine.
CHAPTER 7
Best Practices and Recommendations

This chapter includes the following sections:

- Non-ASCII files and directories... 106
- Required AFTD DFA device settings for Hyper-V environments.............. 106
- Hyper-V Server backup and recovery best practices.............................. 106
- Hyper-V virtual machine applications backup and recovery best practices 107
- Improving backup performance in Windows Server 2012 and 2012 R2 clusters with CSV.. 107
- Data mining using Hyper-V granular level recovery.................................. 108
- Restrictions and requirements for relocating and recovering data to a different location... 108
- Restrictions for backup and recovery of Hyper-V virtual machines in a Windows Server Failover Cluster.. 109
- Restrictions for Hyper-V virtual machine granular level recovery............ 110
Non-ASCII files and directories

If you create a Client resource with the Client Properties dialog box and the Save set attribute contains non-ASCII characters, you must edit the Save operations attribute on the Apps & Modules tab for the Client resource.

On Windows clients, specify the following value in the Save operations attribute:

```
I18N:mode=utf8path
```

On UNIX/Linux clients, specify the following value in the Save operations attribute:

```
I18N:mode=nativepath
```

You must enable diagnostic mode view by selecting View > Diagnostic Mode in the Administration window to access the Save operations attribute in the Client Properties dialog box.

Required AFTD DFA device settings for Hyper-V environments

For Hyper-V environments, when creating a NetWorker AFTD DFA device on an NTFS or ReFS volume, Microsoft requires certain settings.

If the NetWorker AFTD DFA device is created on an NTFS volume, virtual hard disk files must be uncompressed and unencrypted. If the NetWorker AFTD DFA device is created on an ReFS volume, virtual hard disk files must not have the integrity bit set.

Hyper-V Server backup and recovery best practices

This type of backup uses the Hyper-V Writer on the Hyper-V server:

- To get the most benefit from the Hyper-V role, create separate virtual machines for each application, so that the application-type backup and recovery that is performed at the host level is only for Hyper-V.
- After disaster recovery of the Hyper-V server, you might need to recover applications within each virtual machine if:
 - You are performing separate virtual machine backups.
 - These backups are more recent than the complete Hyper-V server backups.
- This type of backup is best used for Bare Metal Recovery of a guest and for recovery of operating system roles.
- Best practice for Host Component file backup is to back up when Hyper-V configuration changes are made. You do not need to back up the Host Component file each time a virtual machine guest is backed up.
- In NMM, the Hyper-V Writer does not support backup of the Host Configuration file to a proxy client.
- The primary purpose for recovering the Host Component file in NMM is for disaster recovery of the Hyper-V Server.
- Roll-forward recovery is not available for virtual machine level disaster scenarios. From a Hyper-V server, a roll-forward recovery of a virtual machine is not possible. Recoveries from a Hyper-V server are point-in-time (disaster recovery).
- Virtual machine pass-through disks are skipped during Hyper-V Server backups.
- Basic disks are supported only within virtual machines.
NMM does not support backups of dynamic disks within virtual machines. NMM mounts the guest snapshot during the Hyper-V backup process, and this changes the disk signature on dynamic disks in a guest.

- NMM supports Windows Server Failover Clustering, which allows you to configure a failover of virtual machine.
- EMC storage that is connected to Fibre Channel or iSCSI storage can be used in the parent to host virtual machines.
- Do not take a Hyper-V VSS server snapshot of Hyper-V virtual machines that are part of a SharePoint farm.

To back up SharePoint on the Hyper-V virtual machine:
1. Install the NMM client on the virtual machine.
2. Perform the SharePoint backup locally within the virtual machine.

The Microsoft website provides recommendations and requirements about using SharePoint and Hyper-V together.

Hyper-V virtual machine applications backup and recovery best practices

This type of backup and recovery is performed within the virtual machine, and uses application and system components Writers available on that virtual machine:

- Microsoft recommends using backups within the virtual machine as the preferred method for Exchange backup and recovery.
- NMM supports roll-forward recovery for Exchange, when Exchange is backed up within the virtual machine.
- Within virtual machines, standard application backup and recovery rules and capabilities apply, including roll-forward recoveries.
- NMM skips virtual machine pass-through disks in Hyper-V backups. NMM supports pass-through disks backups within the virtual machine.
- Windows Server Failover Clustering with iSCSI storage is supported.
- Virtual machine Windows Server failover clustering with fibre channel storage is not supported because SCSI-3 is not supported in Hyper-V virtual machines.

Improving backup performance in Windows Server 2012 and 2012 R2 clusters with CSV

When you use the NMM cluster proxy client to perform image-level backups of virtual machines in a Windows Server 2012 and 2012 R2 cluster with the cluster node as the proxy client, NMM performs the backup by using the data is serviced from the cluster node that owns the CSV where the virtual machine files reside. For example, Cluster Node 1 owns CSV 1 where the virtual machine 1 files reside, and the cluster proxy client is currently running on Cluster Node 2. When the cluster proxy node backs up virtual machine 1, the backup process:

- Creates a shadow copy of CSV1.
- Streams backup data from Cluster Node 1 to Cluster Node 2.
- Routes the backup data to the NMM server.
In this example, the backup performance depends on network performance between the cluster nodes. Performance for this backup is slower than backups where the CSV node ownership is co-resident with the cluster proxy client.

If you use a cluster proxy client for virtual machine backups, then consider the following recommendations to improve performance for image-level backups:

- Maximize the network bandwidth between the cluster nodes.
- Move CSV ownership to the proxy cluster client so that the shadow copies of these volumes are local to the backup process.

To maximize backup performance, ensure that the cluster node that runs the NMM proxy cluster client owns the targeted CSVs. Before you move the CSVs, consider the following:

- Ensure that the cluster node with the cluster client proxy has the capacity to own all physical nodes.
- The CSV owner node is responsible for file system metadata updates to the NTFS partition. If you change the ownership of a CSV volume to a single node, this might impact the performance of all the associated virtual machines on the CSV. The cluster proxy client node should have the capacity to be the owner of all CSVs.
- Ensure that any CSV you move is in the “healthy state”, online, and in full access mode.

There are two ways to change the ownership of a CSV to the proxy node.

- Use the Failover Cluster Manager GUI.

Data mining using Hyper-V granular level recovery

NMM can perform granular level recovery for backups of Hyper-V virtual machines that were created with NMM 3.0 or above. NMM with Hyper-V also supports data mining the information from the virtual machine image drives by using a third party tool such as Kroll OnTrack PowerControls.

To prepare to mine the data, use the NMM GUI to mount the virtual machine, attach the VHDs, and load the virtual machines.

For example, if the virtual machine guest is running SharePoint, first use the NMM GUI to mount the Hyper-V virtual machine image, attach the VHSs, and load the virtual machines. Then use Kroll OnTrack PowerControls to recover SharePoint sites, lists, libraries, and items.

You must keep the NMM GUI open while you explore and recover files on the mounted virtual machine VHDs. If you close or change the focus of the NMM GUI, you lose access to the mounted VHDs. A warning displays anytime a closure or focus change causes loss of access to a mounted virtual machine image.

Restrictions and requirements for relocating and recovering data to a different location

Hyper-V has several restrictions on relocating and recovering to other locations.

NMM does not support directed recoveries of virtual machines to Hyper-V Server that is a higher release than the source Hyper-V Server. Although you can restore a virtual machine to destination Hyper-V Server that runs a release of a Hyper-V Server that is
older than the source Hyper-V server, the virtual machine may not fully function on that server. For mixed environments, you might not be able to perform a redirected restore of a virtual machine from one type of environment to another. Mixed environments include the following configurations:

- Environments with both stand-alone and clustered Hyper-V Servers
- Cluster environments with different operating systems and types of virtual machine storage (CSV and SMB file shares)

Hyper-V does not support:

- Recovering Hyper-V VMs to non-Hyper-V Servers.
- Recovering the Host Component file to a different location.
- Relocating or redirecting Hyper-V backups that were taken before an NMM upgrade.

Before you relocate or recover Hyper-V backups, review these requirements:

- The parent partition must run Windows Server 2012 or higher to recover, with relocation of files, a virtual machine that has Hyper-V snapshots.
- The destination host must have the NMM client installed.
- When you perform a directed recovery of a virtual machine to a Hyper-V Server that differs from the source, you must update the Network Adapter settings of the virtual machine with the Hyper-V Manager before you start the virtual machine.

Restrictions for backup and recovery of Hyper-V virtual machines in a Windows Server Failover Cluster

When a Hyper-V virtual machine resides on a physical host, which is part of a Windows Server Failover Cluster, you cannot back up or recover the virtual machine as part of the cluster virtual server.

For example, consider the following Failover Cluster setup:

- A cluster, Cluster_Virtual_Name, contains two physical machines, Physical_Machine_1 and Physical_Machine_2.
- Physical_Machine_1 contains two virtual machines, VM1 and VM2.

You want to back up and recover VM1.

If you create a NetWorker client resource for:

- Cluster_Virtual_Name, NMM does not support backup and recovery of VM1 through that client resource.
- Physical_Machine_1, you can specify the following values in the save set attribute:
 - APPLICATIONS:\Microsoft Hyper-V back up the Hyper-V application. This save set includes all virtual machines on the physical.
 - APPLICATIONS:\Microsoft Hyper-V\VM1 back up an individual virtual machine, such as VM1.

You can recover VM1 from a backup of the NetWorker client resource of the physical machine, Physical_Machine_1. Performing Hyper-V recovery to the original machine and location on page 60 describes how to perform this type of recovery.

You can perform a directed recover to recover VM1 from the NetWorker client resource of the physical machine, Physical_Machine_1 to the Physical_Machine_2. Performing a directed Hyper-V recovery to a different machine or location on page 61 describes how to perform this type of recovery.
Restrictions for Hyper-V virtual machine granular level recovery

The following restrictions apply when you perform a granular level recovery of a Hyper-V virtual machine.

Windows Server does not support:

- Recovery of deduplicated data. To recover deduplicated volume data, enable the Deduplication role.
- Recovery of ReFs volume data.

NMM Hyper-V GLR does not support differencing disk with parent and child hard disk on different hard drives.
CHAPTER 8

Troubleshooting

This chapter includes the following sections:

- Troubleshooting backups
- Troubleshooting recovery

Troubleshooting backups ... 112
Troubleshooting recovery ... 113
Troubleshooting backups

The following topics explain issues that might occur during the backup process for a Hyper-V environment, as well as steps to resolve or work around the issues.

Redirected I/O status does not update after CSV backup
During a CSV backup, the CSV is in redirected I/O status. Other nodes cannot directly write to disks. Instead, the I/O is redirected over the LAN to the owner node performing the backup.

If the redirected I/O status does not update correctly after the NMM CSV backup is complete, clear the status by performing one of the following steps:

- Type the following commands at the command prompt to delete the stale shadows:
  ```
  diskshadow
  DISKSHADOW> list shadows all
  DISKSHADOW> delete shadows all
  ```

- Type the following command at the Windows PowerShell command prompt:
  ```
  Test-ClusterResourceFailure "volume name"
  ```

Note

This command might clear the "backup in progress" status only.

- If the "redirected access" status is not cleared after performing steps 1 and 2, change the coordinator node by moving the volume to another node in the cluster and verifying that the volume is online.

- Use `nsrcsvutil.exe` to clear the backup state for the affected volume by typing the following:
  ```
  nsrcsvutil -c <csv_volume_path>
  ```
 For example: `nsrcsvutil -c "c:\ClusterStorage\Volume1"

Hyper-V pass-through disks are not backed up in a child partition backup
For Hyper-V backups, the child partition pass-through disks are skipped in the Hyper-V parent partition backup, and child partition pass-through disks are supported by backups within the child partition.

However, sometimes Hyper-V parent partition backup of a child partition with a pass-through disk might fail completely. If this occurs, contact Microsoft support for assistance because the problem might be with the hardware configuration or the Microsoft Hyper-V writer.

Hyper-V configuration requirements for backing up a virtual machine that contains multiple volumes
When there are multiple virtual hard disks in the guest, the backup of the associated virtual machine from the Hyper-V server might fail because of a Microsoft limitation. When there are multiple volumes on the guest, VSS determines the shadowstorage area for the snapshots that are based on which volume has more space. This can lead to a condition where the snapshots of volumes C and D both reside on volume D because volume D has more space. During the snapshot revert stage, PostSnapshot, the snapshot of volume C snapshot might be lost if the snapshot of volume D snapshot is reverted first.

To prepare a multiple volume guest for backup:
Troubleshooting recovery

The following topics explain issues that might occur while performing a Hyper-V recovery, as well as steps to resolve or work around the issues.

When recovering multiple Hyper-V CSV virtual machine through proxy, all the virtual machines are recovered but all the virtual machines are not getting registered

Problem
In a Hyper-V CSV setup, when you recover multiple Hyper-V CSV virtual machines through proxy, all the virtual machines are recovered although only one virtual machine is registered.

Solution
After recovery of multiple Hyper-V CSV virtual machines through proxy is complete, NMM recovers .VHD and .XMLs files. Manually run the following PowerShell command to register the virtual machines that are not registered: "PS C:\Users \administrator.CONTOSO> Import-VM -path "C:\ClusterStorage \Volume3\CSV-VM-013\CSV-VM-013\Virtual Machines\E45E8DBB-FAEF-4A79-B891-5386AB20F66B.xml"

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>CPUUsage(%)</th>
<th>MemoryAssigned(M)</th>
<th>Uptime</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSV-VM-013</td>
<td>Off</td>
<td>0</td>
<td>0</td>
<td>00:00:00</td>
<td>Operating normally</td>
</tr>
</tbody>
</table>
After Hyper-V CSV disaster recovery, application data recovery fails and CSV mount point is not browsable

Problem

After disaster recovery, if NMM is used to recover Hyper-V data, the following issues are observed:

- Hyper-V recovery of virtual machines that are located in a shared disk (but non-CSV volume) fails.
- The CSV volumes are not browsable, and recovery of virtual machines that are located on the CSV volume fails.

Solution

Perform the following steps:

1. Remove stale entries from the cluster resource.
2. In the Domain Controller, start the Active Directory Users and Computers Snap-In, and ensure that the failover cluster virtual network name account of Hyper-V Virtual Server is enabled.

Through Advanced Recovery option, recovery of online virtual machine to other node in same cluster setup completes

Problem

In a Hyper-V CSV setup, when a child partition is up and running, the same child partition can be recovered to another node by using the Advanced Recovery option. This creates multiple virtual machines in different CSV nodes.

Solution

If the virtual machine is online or active, recover the virtual machine to the same node.

NMM registers corrupted Hyper-V child partition to Hyper-V Server

Problem

Even if a recovery operation for a Hyper-V child partition fails, NMM still registers the corrupted Hyper-V child partition to the Hyper-V Server.

Solution

After receiving a confirmation about a failed recovery operation, the Hyper-V system administrator must delete the following:

1. The corrupted Hyper-V child by using the Hyper-V Manager.
2. The corresponding child partition .vhd files.
APPENDIX A

Recovering SQL Server, Exchange Server, and SharePoint Server Items from a Hyper-V VM

This appendix includes the following sections:

- Overview ... 116
- Recovering items .. 116
Overview

This appendix describes how to recover Microsoft SQL Server, Exchange Server, and SharePoint Server items that are stored in Hyper-V virtual machines by using GLR.

The Hyper-V writer of Microsoft Hyper-V Server supports only full backups (VSS_BT_FULL). The Hyper-V requestor performs a full backup of VMs that run a Microsoft application (SQL, Exchange, or SharePoint). If a requestor specifies VSS_BT_COPY, then the Hyper-V writer still performs a full backup, according to the VSS MSDN documentation.

The following table shows the backup types set by the requestor by using the SetBackupState on the host and the backup type set by the Hyper-V requestor inside the guest.

<table>
<thead>
<tr>
<th>Backup type set by requestor via SetBackupState on the host</th>
<th>Backup type set by Hyper-V's requestor inside the guest</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSS_BT_FULL</td>
<td>VSS_BT_FULL</td>
</tr>
<tr>
<td>VSS_BT_COPY</td>
<td>VSS_BT_FULL</td>
</tr>
</tbody>
</table>

Virtual machine image backups are copy-type backups in-guest for applications. Log grooming requires separate in-guest application backups. The Microsoft documentation provides information about the VSS_BT_FULL backup type.

Recovering items

To recover items that are stored on a Hyper-V virtual machine, you must first perform the following steps:

Procedure

1. Configure the Hyper-V Client resources on NetWorker server and choose the Hyper-V Writer save set for backup.
2. Perform a full backup.
3. Open the NMM GUI on the FLR proxy server that you configured for GLR.
4. Select the NetWorker server where the you performed the Hyper-V Server backup as shown in the following figure.
5. Use the Configure Option in the NMM GUI to select the Hyper-V Server Client resources as shown in the following figure.

6. Click Recover › Hyper-V Recover Session › Granular Level Recovery as shown in the following figure.

Recovering SQL Server items

You can recover SQL Server items from a Hyper-V virtual machine.

Procedure

1. Mount the virtual machine that hosts the SQL Server, attach the hard disk, and then browse to the folder that contains the database and logs from which you will recover the items.
2. Select the database (mdf) and logs (ldf) files.
3. Perform the recovery to the folder of your choice.
 If the database is offline in SQL Management Studio, then perform the following steps:
 a. Copy the recovered database and logs files to the actual path.
 b. Bring the database online.
 c. Check that the recovered data is intact.
 If the database is online in SQL Management Studio with some data corruption or loss, then perform the following steps:
 d. Bring the database offline.
 e. Replace the existing database and logs with the recovered database and logs files.
 f. Bring the database online.
 g. Check that the recovered data is intact.

Recovering Exchange Server items

You can recover Exchange Server items from a Hyper-V virtual machine.

Procedure

1. Mount the virtual machine that hosts the Exchange Server, attach the hard disk, and browse to the folder that contains the database and logs from which you will recover the items.

The following figure provides an example.
2. Select the database and logs files.
3. Perform the recovery to the folder of your choice.
 If the database is online in the Exchange Management Console with some data corruption or loss, perform the following steps:
 a. Bring the database offline.
 b. Replace the existing database and logs folder with the recovered database and logs folder in the actual path.
 c. Bring the database online.
 d. Check that the recovered data is intact.
 If the database is offline in the Exchange Management Console, perform the following steps:
 e. Replace the existing database and logs folder with recovered database and logs folder in the actual path.
 f. Bring the database online.
 g. Check that the recovered data is intact.

Recovering SharePoint Server items

Use Kroll Ontrack Power Control Software to perform SharePoint GLR.

Procedure
1. Mount the virtual machine that hosts the SharePoint database, attach the hard disk, and browse to the folder that contains the database and logs from which you will recover the items.
2. Select the database and logs files.
 NMM mounts the Hyper-V VHD file in a location that you define during GLR recovery. The default location is C:\Program Files\EMC NetWorker\nsr\tmp\.
3. Use Kroll Ontrack Power Control Software to perform the SharePoint GLR.
 Install Kroll on the SharePoint Server and on the FLR proxy server where you mount the Hyper-V virtual machine. These steps are similar to the procedure described in the EMC NetWorker Module for Microsoft for SQL and SharePoint VSS User Guide. In this document, you directly mount the database under SharePoint and SQL Server Recover Session.
 However, to recover items from a virtual machine that hosts the SharePoint Server, you must configure Kroll differently. In Add the Source Path for the database, select the path where the Hyper-V VHD is mounted and then browse through the folder to select the database.
 For example: C:\Program Files\EMC NetWorker\nsr\tmp\HyperVMountPoints\SQL2010\Hard Disk 0\Partition1\sqlfirstins\MSSQL11.FIRSTINSTANCE\MSSQL\DATA.
4. Provide the target SharePoint Server with credentials.
 Kroll Ontrack Software configures itself with the SharePoint Server and FLR proxy server by scanning the logs, pre-scanning the logs, hashing the logs, and retrieving the content database.
5. After the Kroll Ontrack configuration completes, copy the content to be recovered from the source to the target location.