Global Sales Contact List

Contact   A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

RSA Laboratories

1.7 Why is cryptography important?

Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus allowing people to do business electronically without worries of deceit and deception. Every day hundreds of thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines, or cellular phones. The perpetual increase of information transmitted electronically has lead to an increased reliance on cryptography.

Cryptography on the Internet

The Internet, comprised of millions of interconnected computers, allows nearly instantaneous communication and transfer of information, around the world. People use e-mail to correspond with one another. The World Wide Web is used for online business, data distribution, marketing, research, learning, and a myriad of other activities.

Cryptography makes secure web sites (see Question 5.1.2) and electronic safe transmissions possible. For a web site to be secure all of the data transmitted between the computers where the data is kept and where it is received must be encrypted. This allows people to do online banking, online trading, and make online purchases with their credit cards, without worrying that any of their account information is being compromised. Cryptography is very important to the continued growth of the Internet and electronic commerce.

E-commerce (see Section 4.2) is increasing at a very rapid rate. By the turn of the century, commercial transactions on the Internet are expected to total hundreds of billions of dollars a year. This level of activity could not be supported without cryptographic security. It has been said that one is safer using a credit card over the Internet than within a store or restaurant. It requires much more work to seize credit card numbers over computer networks than it does to simply walk by a table in a restaurant and lay hold of a credit card receipt. These levels of security, though not yet widely used, give the means to strengthen the foundation with which e-commerce can grow.

People use e-mail to conduct personal and business matters on a daily basis. E-mail has no physical form and may exist electronically in more than one place at a time. This poses a potential problem as it increases the opportunity for an eavesdropper to get a hold of the transmission. Encryption protects e-mail by rendering it very difficult to read by any unintended party. Digital signatures can also be used to authenticate the origin and the content of an e-mail message.


In some cases cryptography allows you to have more confidence in your electronic transactions than you do in real life transactions. For example, signing documents in real life still leaves one vulnerable to the following scenario. After signing your will, agreeing to what is put forth in the document, someone can change that document and your signature is still attached. In the electronic world this type of falsification is much more difficult because digital signatures (see Question 2.2.2) are built using the contents of the document being signed.

Access Control

Cryptography is also used to regulate access to satellite and cable TV. Cable TV is set up so people can watch only the channels they pay for. Since there is a direct line from the cable company to each individual subscriber's home, the Cable Company will only send those channels that are paid for. Many companies offer pay-per-view channels to their subscribers. Pay-per-view cable allows cable subscribers to "rent" a movie directly through the cable box. What the cable box does is decode the incoming movie, but not until the movie has been ``rented.'' If a person wants to watch a pay-per-view movie, he/she calls the cable company and requests it. In return, the Cable Company sends out a signal to the subscriber's cable box, which unscrambles (decrypts) the requested movie.

Satellite TV works slightly differently since the satellite TV companies do not have a direct connection to each individual subscriber's home. This means that anyone with a satellite dish can pick up the signals. To alleviate the problem of people getting free TV, they use cryptography. The trick is to allow only those who have paid for their service to unscramble the transmission; this is done with receivers (``unscramblers''). Each subscriber is given a receiver; the satellite transmits signals that can only be unscrambled by such a receiver (ideally). Pay-per-view works in essentially the same way as it does for regular cable TV.

As seen, cryptography is widely used. Not only is it used over the Internet, but also it is used in phones, televisions, and a variety of other common household items. Without cryptography, hackers could get into our e-mail, listen in on our phone conversations, tap into our cable companies and acquire free cable service, or break into our bank/brokerage accounts.

Top of the page
Connect with EMCConnect with EMC
Need help immediately? EMC Sales Specialists are standing by to answer your questions real time.
Use Live Chat for fast, direct access to EMC Customer Service Professionals to resolve your support questions.
Explore and compare EMC products in the EMC Store, and get a price quote from EMC or an EMC partner.
We're here to help. Send us your sales inquiry and an EMC Sales Specialist will get back to you within one business day.
Want to talk? Call us to speak with an EMC Sales Specialist live.