Global Sales Contact List

Contact   A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

RSA Laboratories

3.6.6 What are MD2, MD4, and MD5?

MD2 [Kal92], MD4 [Riv91b] [Riv92b], and MD5 [Riv92c] are message-digest algorithms developed by Rivest. They are meant for digital signature applications where a large message has to be "compressed" in a secure manner before being signed with the private key. All three algorithms take a message of arbitrary length and produce a 128-bit message digest. While the structures of these algorithms are somewhat similar, the design of MD2 is quite different from that of MD4 and MD5. MD2 was optimized for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines. Description and source code for the three algorithms can be found as Internet RFCs 1319-1321 [Kal92] [Riv92b] [Riv92c].

MD2 was developed by Rivest in 1989. The message is first padded so its length in bytes is divisible by 16. A 16-byte checksum is then appended to the message, and the hash value is computed on the resulting message. Rogier and Chauvaud have found that collisions for MD2 can be constructed if the calculation of the checksum is omitted [RC95]. This is the only cryptanalytic result known for MD2.

MD4 was developed by Rivest in 1990. The message is padded to ensure that its length in bits plus 64 is divisible by 512. A 64-bit binary representation of the original length of the message is then concatenated to the message. The message is processed in 512-bit blocks in the Damgård/Merkle iterative structure (see Question 2.1.6), and each block is processed in three distinct rounds. Attacks on versions of MD4 with either the first or the last rounds missing were developed very quickly by Den Boer, Bosselaers [DB92] and others. Dobbertin [Dob95] has shown how collisions for the full version of MD4 can be found in under a minute on a typical PC. In recent work, Dobbertin (Fast Software Encryption, 1998) has shown that a reduced version of MD4 in which the third round of the compression function is not executed but everything else remains the same, is not one-way. Clearly, MD4 should now be considered broken.

MD5 was developed by Rivest in 1991. It is basically MD4 with "safety-belts" and while it is slightly slower than MD4, it is more secure. The algorithm consists of four distinct rounds, which has a slightly different design from that of MD4. Message-digest size, as well as padding requirements, remain the same. Den Boer and Bosselaers [DB94] have found pseudo-collisions for MD5 (see Question 2.1.6). More recent work by Dobbertin has extended the techniques used so effectively in the analysis of MD4 to find collisions for the compression function of MD5 [DB96b]. While stopping short of providing collisions for the hash function in its entirety this is clearly a significant step. For a comparison of these different techniques and their impact the reader is referred to [Rob96].

Van Oorschot and Wiener [VW94] have considered a brute-force search for collisions (see Question 2.1.6) in hash functions, and they estimate a collision search machine designed specifically for MD5 (costing $10 million in 1994) could find a collision for MD5 in 24 days on average. The general techniques can be applied to other hash functions.

More details on MD2, MD4, and MD5 can be found in [Pre93] and [Rob95b].

Top of the page

Connect with EMCConnect with EMC
Need help immediately? EMC Sales Specialists are standing by to answer your questions real time.
Use Live Chat for fast, direct access to EMC Customer Service Professionals to resolve your support questions.
Explore and compare EMC products in the EMC Store, and get a price quote from EMC or an EMC partner.
We're here to help. Send us your sales inquiry and an EMC Sales Specialist will get back to you within one business day.
Want to talk? Call us to speak with an EMC Sales Specialist live.